View All Items
Pages
- Title
- The Florida Project: A Micro-Budget Feature Comedy.
- Creator
-
Lancaster, Benjamin, Peters, Philip, Peterson, Lisa, Sandler, Barry, University of Central Florida
- Abstract / Description
-
The Further Adventures of Walt's Frozen Head is a feature comedy written, directed, and produced by Benjamin Lancaster. It is a part of the requirements for earning a Master of Fine Arts in Entrepreneurial Digital Cinema from the University of Central Florida.This film hopes to engage the popular urban legend and mythologies surrounding Walt Disney and the Disney company, and uses the story of a father letting go of his daughter to contradict the central messages of the Disney Company, i.e....
Show moreThe Further Adventures of Walt's Frozen Head is a feature comedy written, directed, and produced by Benjamin Lancaster. It is a part of the requirements for earning a Master of Fine Arts in Entrepreneurial Digital Cinema from the University of Central Florida.This film hopes to engage the popular urban legend and mythologies surrounding Walt Disney and the Disney company, and uses the story of a father letting go of his daughter to contradict the central messages of the Disney Company, i.e. believe in your dreams, and they will come true.A film of this subject matter requires the mircobudget approach due to the guerilla style shooting and the dismal prospect of financial returns.This thesis is a record of the film, from inception to completion with the plans for distribution.
Show less - Date Issued
- 2016
- Identifier
- CFE0006469, ucf:51414
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006469
- Title
- Statistical Analysis of Multi-Row Film Cooling Flowfields.
- Creator
-
Fernandes, Craig, Kapat, Jayanta, Ahmed, Kareem, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
A huge part of modern day power generation research and development strives to achievehigher thermal efficiencies and specific work outputs for both gas turbine Brayton and combinedcycles. Advances in cooling technologies, both internal to turbine blades and external, provide the easiest way to accomplish this by raising the turbine inlet temperature far beyond the super-alloy's allowable temperature. Discrete film cooling injection, an external cooling technique, ensures a cool blanket of...
Show moreA huge part of modern day power generation research and development strives to achievehigher thermal efficiencies and specific work outputs for both gas turbine Brayton and combinedcycles. Advances in cooling technologies, both internal to turbine blades and external, provide the easiest way to accomplish this by raising the turbine inlet temperature far beyond the super-alloy's allowable temperature. Discrete film cooling injection, an external cooling technique, ensures a cool blanket of compressed air protects the blade surface from the harsh mainstream gas. To optimize the coverage and effectiveness of the film, a thorough understanding of the behavior andflow physics is necessary.The objective of the current study is to use hotwire anemometry as a tool to conduct 1D timeresolved turbulent measurements on the flow field of staggered multi-row film cooling arrays withcylindrical and diffuser shaped holes inclined at 20 degrees to the freestream. The study aims toinvestigate the flowfield to determine why the performance of diffuser shaped jets is enhanced even at comparatively high blowing ratios. In addition, blowing ratio effects and flowfield discrepanciesat set downstream locations in the array centerline plane are also investigated.The experiments are conducted on an open-loop wind tunnel for blowing ratios in the rangeof 0.3 to 1.5 at a density ratio of 1. Boundary layer measurements were taken at 12 locations atthe array centerline to obtain mean velocity, turbulence level, turbulence intensity, and integral length scales. Measurements were also taken at a location upstream of the array to characterize the incoming boundary layer and estimate the wall normal position of the probe in comparison with the logarithmic law of the wall.Mean effective velocity profiles were found to scale with blowing ratio for both geometries.A strong dependence of turbulence levels on velocity gradients between jets and the local fluid was also noticed. For cylindrical jets, attached cases displayed lower integral length scales in the nearwall region compared with higher blowing ratio cases. This was found to be due to entrainmentof mainstream fluid showing increased momentum transport below the jets. Diffuser cases atall blowing ratios tested do not show increased length scales near the wall demonstrating theirenhanced surface coverage. Row-to-row discrepancies in mean velocity and turbulence level are only evident at extremely high blowing cases for cylindrical, but show significant deviations for diffuser cases at all blowing ratios.Unlike the cylindrical cases, jets from diffuser shaped holes, due to their extremely low injecting velocities, dragged the boundary layer with each row of blowing. Increased velocity gradients create a rise in peak turbulence levels at downstream locations. At high blowing ratios however, faster moving fluid, due to injection, at lower elevations acts as a shield for downstream jets allowing significantly further propagation downstream. Near the wall low magnitude integral length scales are noticed for diffuser jets indicating low momentum transport in this region.The results show good agreement with effectiveness measurements of a previous study at a higher density ratio. However, to accurately draw the comparison, effectiveness measurements should be conducted at a density ratio of 1. Recommendations were made to further the study of multi-row film cooled boundary layers. The scope includes a CFD component, other flowfield measurement techniques, and surface effectiveness studies using Nitrogen as the coolant for a much broader picture of this flowfield.
Show less - Date Issued
- 2017
- Identifier
- CFE0006738, ucf:51863
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006738
- Title
- Images of Nostalgia: An Exploration of the Creation of Recollection Through Visual Media.
- Creator
-
Dickerson, Allyson, Harris, Christopher, Danker, Elizabeth, Shults, Katherine, Perez, Jonathan, University of Central Florida
- Abstract / Description
-
I create innovative artistic works in which the experiential consciousness of the viewer drifts between objects, images, and the auditory narrative. The work approaches the visualization of memory and the catharsis of the loss felt from death. The projection of light onto lifeless entomological specimens mimics the projection of memory as a means to return to what has been lost. The digital copy of the specimen flickers across their bodies as a tribute to the movement that once possessed them...
Show moreI create innovative artistic works in which the experiential consciousness of the viewer drifts between objects, images, and the auditory narrative. The work approaches the visualization of memory and the catharsis of the loss felt from death. The projection of light onto lifeless entomological specimens mimics the projection of memory as a means to return to what has been lost. The digital copy of the specimen flickers across their bodies as a tribute to the movement that once possessed them. A List of Things that Quicken the Heart is a body of multimedia installation and single channel work that has been completed as part of my candidacy for an Emerging Media: Entrepreneurial Digital Cinema M.F.A. at the University of Central Florida.The single channel video work is created in the essay film mode. The visual elements of the piece are a blend of the effect of contextualizing disparate images and subjects. It is the means by which the audience is led to draw connections to the subject of memory without making any specific inferences. As the assembly of images takes place, so too does the assembly of theoretical and observational threads in the essay narration. As the filmmaker, I am speaking directly to the viewer about the implications of my experiences and observations. The editorial rhythm is such that the viewer is allowed brief pauses in the flow of information to meditate on the subject of nostalgia, and how the film incites them to consider the notion. There will also be an ambient audio component designed with the idea of creating a subtle, auditory contrast between familiar and uncanny ambient sounds.The correlating installations will serve as artifacts of memory, the physical objects relevant to my own nostalgia, which will help to serve as a recollection of the narration. In order to integrate them with the tone of the essay film, the narration will be played as a separate component through speakers that surround the space, so that it will envelope the viewer.
Show less - Date Issued
- 2017
- Identifier
- CFE0006735, ucf:51858
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006735
- Title
- A Blue Flower: The Development of a Personal Documentary.
- Creator
-
Taranger, Nils, Mills, Lisa, Stoeckl, Ula, Sandler, Barry, University of Central Florida
- Abstract / Description
-
A Blue Flower is a feature-length documentary film by Nils Taranger, made as part of the requirements for earning a Master of Fine Arts in Entrepreneurial Digital Cinema from the University of Central Florida. The film focuses on the director's journey to find healing, both physically and emotionally.Following the guidelines of UCF's program, Nils produced the film on a microbudget (under $50,000) level. The majority of filming took place in Florida with only a one or two person crew. This...
Show moreA Blue Flower is a feature-length documentary film by Nils Taranger, made as part of the requirements for earning a Master of Fine Arts in Entrepreneurial Digital Cinema from the University of Central Florida. The film focuses on the director's journey to find healing, both physically and emotionally.Following the guidelines of UCF's program, Nils produced the film on a microbudget (under $50,000) level. The majority of filming took place in Florida with only a one or two person crew. This thesis is a record of the film's progression from development to picture lock, in preparation for distribution.
Show less - Date Issued
- 2012
- Identifier
- CFE0004607, ucf:49915
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004607
- Title
- The Impact of Growth Conditions on Cubic ZnMgO Ultraviolet Sensors.
- Creator
-
Boutwell, Ryan, Schoenfeld, Winston, Likamwa, Patrick, Kik, Pieter, Chernyak, Leonid, University of Central Florida
- Abstract / Description
-
Cubic Zn1-xMgxO (c-Zn1-xMgxO) thin films have opened the deep ultraviolet (DUV) spectrum to exploration by oxide optoelectronic devices. These extraordinary films are readily wet-etch-able, have inversion symmetric lattices, and are made of common and safe constituents. They also host a number of new exciting experimental and theoretical challenges. Here, the relation between growth conditions of the c-Zn1-xMgxO film and performance of fabricated ultraviolet (UV) sensors is investigated....
Show moreCubic Zn1-xMgxO (c-Zn1-xMgxO) thin films have opened the deep ultraviolet (DUV) spectrum to exploration by oxide optoelectronic devices. These extraordinary films are readily wet-etch-able, have inversion symmetric lattices, and are made of common and safe constituents. They also host a number of new exciting experimental and theoretical challenges. Here, the relation between growth conditions of the c-Zn1-xMgxO film and performance of fabricated ultraviolet (UV) sensors is investigated. Plasma-Enhanced Molecular Beam Epitaxy was used to grow Zn1-xMgxO thin films and formation conditions were explored by varying the growth temperature, Mg source flux, oxygen flow rate, and radio-frequency (RF) power coupled into the plasma. Material review includes the effect of changing conditions on the film's optical transmission, surface morphology, growth rate, crystalline phase, and stoichiometric composition. Oxygen plasma composition was investigated by spectroscopic analysis under varying oxygen flow rate and applied RF power and is correlated to device performance. Ni/Mg/Au interdigitated metal-semiconductor-metal detectors were formed to explore spectral responsivity and UV-Visible rejection ratio (RR). Zn1-xMgxO films ranged in Mg composition from x = 0.45 - 1.0. Generally, x increased with increasing substrate temperature and Mg source flux, and decreased with increasing oxygen flow rate and RF power. Increasing x was correlated with decreased peak responsivity intensity and increased RR. Device performance was improved by increasing the ratio of O to O+ atoms and minimizing O2+ in the plasma. Peak responsivity as high as 500 A/W was observed in visible-blind phase-segregated Zn1-xMgxO devices, while cubic phase solar-blind devices demonstrated peak responsivity as high as 12.6 mA/W, and RR of three orders of magnitude. Optimal conditions are predicted for the formation of DUV Zn1-xMgxO sensors.
Show less - Date Issued
- 2013
- Identifier
- CFE0005087, ucf:50735
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005087
- Title
- Touching the Unreal: The Definition, Narrative Strategies, and Aesthetics of 3D Cartoon Narratives.
- Creator
-
Snow, Nathan, Mauer, Barry, Applen, JD, Grajeda, Anthony, Larsen, Darl, University of Central Florida
- Abstract / Description
-
(")Touching the Unreal(") follows the structure set out by Scott McCloudin Understanding Comics to argue that understanding cartoons is serious business and requires that we define the art form, outline its basic tenets, and theorize how the mind understands it. The dissertation argues for a new definition of 3D computer generated cartoons, beginning with the most basic definition applicable to all forms of animation and taking into account new technological developments before arriving at...
Show more(")Touching the Unreal(") follows the structure set out by Scott McCloudin Understanding Comics to argue that understanding cartoons is serious business and requires that we define the art form, outline its basic tenets, and theorize how the mind understands it. The dissertation argues for a new definition of 3D computer generated cartoons, beginning with the most basic definition applicable to all forms of animation and taking into account new technological developments before arriving at the 3D cartoon narratives of today. The dissertation outlines the basic facets of 3D cartoon narratives in terms of narrative and aesthetics, arguing that, in spite of the technological changes required to produce the art form, narrative strategies have not changed significantly from 2D to 3D cartoon narratives. Rather, the 3D cartoon narrative aesthetic is focused primarily on synthetic, sculptural materiality to create a tactile, haptic viewing experience unavailable in any other form of animation. The dissertation advances theories of how the mind understands 3D cartoon narratives, starting with how these films guide the spectator to pre-determined conclusions based on character identification, flow theory, and mirror-neuron cognition. As a result of their narrative, aesthetics, and reception, these films constitute a new form of posthumanism and operate as a node in the modern viewer's web of distributed cognition, enchanting viewers through the ability to touch the unreal, synthetic images common to the modern world. (")Touching the Unreal(") contributes to the media field by providing a definition for 3D computer animation in all of its facets as genre, narrative, aesthetics, and ideology.
Show less - Date Issued
- 2018
- Identifier
- CFE0007101, ucf:51962
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007101
- Title
- RED TIDE: A FEATURE LENGTH MOTION PICTURE.
- Creator
-
Gallina, Dino, Wolfe, Jesse, University of Central Florida
- Abstract / Description
-
The following document provides insight into the uncharted process of producing a micro-budget feature length film. This paper aims to document my growth as an artist in terms of storytelling and filmmaking as well as the development and production process. Red Tide: A Feature Length Motion Picture includes elements from each phase of the production process, from story and script development to marketing and distribution. This document reflects on the obstacles we faced and the solutions we...
Show moreThe following document provides insight into the uncharted process of producing a micro-budget feature length film. This paper aims to document my growth as an artist in terms of storytelling and filmmaking as well as the development and production process. Red Tide: A Feature Length Motion Picture includes elements from each phase of the production process, from story and script development to marketing and distribution. This document reflects on the obstacles we faced and the solutions we implemented during the process of creating a feature length motion picture on an undersized budget.
Show less - Date Issued
- 2010
- Identifier
- CFE0003192, ucf:48586
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003192
- Title
- The Happiest Place on Earth - The Microbudget Model as a Means to an American National Cinema.
- Creator
-
Goshorn, John, Stoeckl, Ula, Gay, Andrew, Harris, Christopher, Sandler, Barry, University of Central Florida
- Abstract / Description
-
The Happiest Place on Earth is a feature-length film written, directed, and produced by John Goshorn as part of the requirements for earning a Master of Fine Arts in Film (&) Digital Media from the University of Central Florida. The project aims to challenge existing conventions of the American fiction film on multiple levels (-) aesthetic, narrative, technical, and industrial (-)while dealing with a distinctly American subject and target audience. These challenges were both facilitated and...
Show moreThe Happiest Place on Earth is a feature-length film written, directed, and produced by John Goshorn as part of the requirements for earning a Master of Fine Arts in Film (&) Digital Media from the University of Central Florida. The project aims to challenge existing conventions of the American fiction film on multiple levels (-) aesthetic, narrative, technical, and industrial (-)while dealing with a distinctly American subject and target audience. These challenges were both facilitated and necessitated by the limited resources available to the production team and the academic context of the production. This thesis is a record of the film, from concept to completion and preparation for delivery to an audience.
Show less - Date Issued
- 2012
- Identifier
- CFE0004325, ucf:49451
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004325
- Title
- Experimental and Numerical Study of Endwall Film Cooling.
- Creator
-
Mahadevan, Srikrishna, Kapat, Jayanta, Verma, Shashi, Vasu Sumathi, Subith, Ahmed, Kareem, Shivamoggi, Bhimsen, University of Central Florida
- Abstract / Description
-
This research work investigates the thermal performance of a film-cooled gas turbine endwall under two different mainstream flow conditions. In the first part of the research investigation, the effect of unsteady passing wakes on a film-cooled pitchwise-curved surface (representing an endwall without airfoils) was experimentally studied for heat transfer characteristics on a time-averaged basis. The temperature sensitive paint technique was used to obtain the local temperatures on the test...
Show moreThis research work investigates the thermal performance of a film-cooled gas turbine endwall under two different mainstream flow conditions. In the first part of the research investigation, the effect of unsteady passing wakes on a film-cooled pitchwise-curved surface (representing an endwall without airfoils) was experimentally studied for heat transfer characteristics on a time-averaged basis. The temperature sensitive paint technique was used to obtain the local temperatures on the test surface. The required heat flux input was provided using foil heaters. Discrete film injection was implemented on the test surface using cylindrical holes with a streamwise inclination angle of 35? and no compound angle relative to the mean approach velocity vector. The passing wakes increased the heat transfer coefficients at both the wake passing frequencies that were experimented. Due to the increasing film cooling jet turbulence and strong jet-mainstream interaction at higher blowing ratios, the heat transfer coefficients were amplified. A combination of film injection and unsteady passing wakes resulted in a maximum pitch-averaged and centerline heat transfer augmentation of ? 28% and 31.7% relative to the no wake and no film injection case. The second part of the research study involves an experimental and numerical analysis of secondary flow and coolant film interaction in a high subsonic annular cascade with a maximum isentropic throat Mach number of ? 0.68. Endwall (platform) thermal protection is provided using discrete cylindrical holes with a streamwise inclination angle of 30? and no compound angle relative to the mean approach velocity vector. The surface flow visualization on the inner endwall provided the location of the saddle point and the three-dimensional separation lines. Computational predictions showed that the leading-edge horseshoe vortex was confined to approximately 1.5% of the airfoil span for the no film injection case and intensified with low momentum film injection. At the highest blowing ratio, the film cooling jet weakened the horseshoe vortex at the leading-edge plane. The passage vortex was intensified with coolant injection at all blowing ratios. It was seen that increasing average blowing ratio improved the film effectiveness on the endwall. The discharge coefficients calculated for each film cooling hole indicated significant non-uniformity in the coolant discharge at lower blowing ratios and the strong dependence of discharge coefficients on the mainstream static pressure and the location of three-dimensional separation lines. Near the airfoil suction side, a region of coalesced film cooling jets providing close to uniform film coverage was observed, indicative of the mainstream acceleration and the influence of three-dimensional separation lines.
Show less - Date Issued
- 2015
- Identifier
- CFE0005973, ucf:50775
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005973
- Title
- Immediacy in Comedy: How Gertrude Stein, Long Form Improv, and 5 Second Films Can Revolutionize the Comedic Form.
- Creator
-
Hluch, Alexander, Listengarten, Julia, McCoy, Allen, Brotherton, Mark, University of Central Florida
- Abstract / Description
-
Comedy has typically been derided as second-tier to drama in all aspects of narrative. Throughout history, comedy has seen short shrift in both critical reception and academic investigation. Merit is simply placed on drama far before that of comedy. This is not for comedy's own lack of skill or craft, but simply for comedy's misappropriation as a narrative form. Throughout the years, by way of either competition or economic superiority, comedy has been pigeonholed into the typified dramatic...
Show moreComedy has typically been derided as second-tier to drama in all aspects of narrative. Throughout history, comedy has seen short shrift in both critical reception and academic investigation. Merit is simply placed on drama far before that of comedy. This is not for comedy's own lack of skill or craft, but simply for comedy's misappropriation as a narrative form. Throughout the years, by way of either competition or economic superiority, comedy has been pigeonholed into the typified dramatic structure that drama so thoroughly encapsulates. Being forced into a form that exemplifies complex, climactic structure and explicit character development, comedy in its purest form has suffered through the ages. Gertrude Stein's theory of Landscape Drama, and, more specifically, immediacy, is best attuned to comedy in its truest form. Comedy does not require sweeping character development, obtuse narrative design, or fantastic spectacle to produce superior works of art. Comedy, when compared to drama, exists best in a much more punctuated format. Stein's theories, while never intended for comedy, align absolutely perfectly with the comedic genre's design. And epitomized through long form improv on the stage, and the newly-fashioned digital short made profitable by the proliferation of the internet and digital culture, comedy's purest form has become more readily available as narrative has progressed throughout history. With this thesis, I intend to display the disparity between comedy and drama due to comedy's misallotment into a format that does not properly encapsulate it to its most fulfilling embodiment. Through this display, I seek to uncover the debt done to the comedic form from centuries of neglect in academic query and merit in order to best prove comedy's need for critical scrutiny. Further, in doing so I hope to better construe a community of comedic research and criticism in order to create better art and more diverse comedic offerings.
Show less - Date Issued
- 2013
- Identifier
- CFE0005097, ucf:50727
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005097
- Title
- FILM COOLING WITH WAKE PASSING APPLIED TO AN ANNULAR ENDWALL.
- Creator
-
Tran, Nghia, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Advancement in turbine technology has far reaching effects on today's society and environment. With more than 90% of electricity and 100% of commercial air transport being produced by the usage of gas turbine, any advancement in turbine technology can have an impact on fuel used, pollutants and carbon dioxide emitted to the environment. Within the turbine engine, fully understanding film cooling is critical to reliability of a turbine engine. Film cooling is an efficient way to protect...
Show moreAdvancement in turbine technology has far reaching effects on today's society and environment. With more than 90% of electricity and 100% of commercial air transport being produced by the usage of gas turbine, any advancement in turbine technology can have an impact on fuel used, pollutants and carbon dioxide emitted to the environment. Within the turbine engine, fully understanding film cooling is critical to reliability of a turbine engine. Film cooling is an efficient way to protect the engine surface from the extremely hot incoming gas, which is at a temperature much higher than allowable temperature of even the most advanced super alloy used in turbine. Film cooling performance is affected by many factors: geometrical factors and as well as flow conditions. In most of the film cooling literature, film effectiveness has been used as criterion to judge and/or compare between film cooling designs. Film uniformity is also a critical factor, since it determines how well the coolant spread out downstream to protect the hot-gas-path surface of a gas turbine engine. Even after consideration of all geometrical factors and flow conditions, the film effectiveness is still affected by the stator-rotor interaction, in particular by the moving wakes produced by upstream airfoils. A complete analysis of end wall film cooling inside turbine is required to fully understand the phenomena. This full analysis is almost impossible in the academic arena. Therefore, a simplified but critical experimental rig and computational fluid model were designed to capture the effect of wake on film cooling inside an annular test section. The moving wakes are created by rotating a wheel with 12 spokes or rods with a variable speed motor. Thus changing the motor speed will alter the wake passing frequency. This design is an advancement over most previous studies in rectangular duct, which cannot simulate wakes in an annular passage as in an engine. This rig also includes film injection that allows study of impact of moving wakes on film cooling. This wake is a simplified representation of the trailing edge created by an upstream airfoil. An annulus with 30ð pitch test section is considered in this study. This experimental rig is based on an existing flat plate film cooling (BFC) rig that has been validated in the past. Measurement of velocity profiles within the moving wake downstream from the wake generator is used to validate the CFD rotating wake model. The open literature on film cooling and past experiments performed in the laboratory validated the CFD film cooling model. With these validations completed, the full CFD model predicts the wake and film cooling interaction. Nine CFD cases were considered by varying the film cooling blowing ratio and the wake Strouhal number. The results indicated that wakes highly enhance film cooling effectiveness near film cooling holes and degrades the film blanket downstream of the film injection, at the moment of wake passing. However, the time-averaged film cooling effectiveness is more or less the same with or without wake.
Show less - Date Issued
- 2010
- Identifier
- CFE0003483, ucf:48956
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003483
- Title
- NANOCLUSTER THIN-FILMS FOR SENSOR APPLICATIONS.
- Creator
-
Serritella, Joseph, Malocha, Donald, University of Central Florida
- Abstract / Description
-
The ability to sense gas such as methane can provide an early warning system to protect human lives. High demand for the ability to sense the world around us has provided an extensive area of research for sensor technology. In particular, current sensor technology, specifically for methane, has provided sensors that require a heated environment to function. The majority of current methane sensors function at temperatures between 150[degrees]C and 450[degrees]C . This thesis will explore an...
Show moreThe ability to sense gas such as methane can provide an early warning system to protect human lives. High demand for the ability to sense the world around us has provided an extensive area of research for sensor technology. In particular, current sensor technology, specifically for methane, has provided sensors that require a heated environment to function. The majority of current methane sensors function at temperatures between 150[degrees]C and 450[degrees]C . This thesis will explore an approach to produce a room temperature methane sensor. This research will investigate techniques to create a sensor that is responsive to methane at 23[degrees]C. The approach will use the integration of a very thin film, which changes its resistive properties when methane gas is applied, deposited atop the surface of a piezoelectric substrate. An aluminum thin film interdigital transducer will launch a surface acoustic wave (SAW) that travels under the sensor's gas-sensitive resistive thin film. The SAW/resistive film interaction changes the SAW amplitude, phase and delay. For this work, three films, tin dioxide (SnO2), zinc oxide (ZnO) and palladium (Pd) [1, 2] will be studied. Gas detection will be shown when combining ZnO and Pd, and, observable change in SAW propagation loss is measured when methane gas is present at the film.
Show less - Date Issued
- 2015
- Identifier
- CFH0004832, ucf:45481
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004832
- Title
- THEORETICAL TAILORING OF PERFORATED THIN SILVER FILMS FOR AFFINITY SURFACE PLASMON RESONANCE BIOSENSOR APPLICATIONS.
- Creator
-
Gongora Jr., Renan, Zou, Shengli, University of Central Florida
- Abstract / Description
-
Metallic films, in conjunction with biochemical-targeted probes, are expected to provide early diagnosis, targeted therapy and non-invasive monitoring for epidemiology applications. The resonance wavelength peaks, both plasmonic and Wood-Rayleigh Anomalies (WRAs), in the scattering spectra are affected by the metallic architecture. As of today, much research has been devoted to extinction efficiency in the plasmonic region. However, Wood Rayleigh Anomalies (WRAs) typically occur at...
Show moreMetallic films, in conjunction with biochemical-targeted probes, are expected to provide early diagnosis, targeted therapy and non-invasive monitoring for epidemiology applications. The resonance wavelength peaks, both plasmonic and Wood-Rayleigh Anomalies (WRAs), in the scattering spectra are affected by the metallic architecture. As of today, much research has been devoted to extinction efficiency in the plasmonic region. However, Wood Rayleigh Anomalies (WRAs) typically occur at wavelengths associated with the periodic distance of the structures. A significant number of papers have already focused on the plasmonic region of the visible spectrum, but a less explored area of research was presented here; the desired resonance wavelength region was 400-500nm, corresponding to the WRA for the silver film with perforated hole with a periodic distance of 400nm. Simulations obtained from the discrete dipole approximation (DDA) method, show sharp spectral bands (either high or low scattering efficiencies) in both wavelength regions of the visible spectrum simulated from Ag film with cylindrical hole arrays In addition, surprising results were obtained in the parallel scattering spectra,where the electric field is contained in the XY plane, when the angle between the metallic surface and the incident light was adjusted to 14 degrees; a bathochromic shift was observed for the WRA peak suggesting a hybrid resonance mode. Metallic films have the potential to be used in instrumental techniques for use as sensors, i.e. surface plasmon resonance affinity biosensors, but are not limited to such instrumental techniques. Although the research here was aimed towards affinity biosensors, other sensory designs can benefit from the optimized Ag film motifs. The intent of the study was to elucidate metal film motifs, when incorporated into instrumental analysis, allowing the quantification of genetic material in the visible region. Any research group that routinely benefits from quantification of various analytes in solution matrices will also benefit from this study, as there are a bewildering number of instrumental sensory methods and setups available.
Show less - Date Issued
- 2014
- Identifier
- CFH0004538, ucf:45155
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004538
- Title
- Modeling and Spray Pyrolysis Processing of Mixed Metal Oxide Nano-Composite Gas Sensor Films.
- Creator
-
Khatami, Seyed Mohammad Navid, Ilegbusi, Olusegun, Deng, Weiwei, Kassab, Alain, Coffey, Kevin, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
The role of sensor technology is obvious in improvement and optimization of many industrial processes. The sensor films, which are considered the core of chemical sensors, have the capability to detect the presence and concentration of a specific chemical substance. Such sensor films achieve selectivity by detecting the interaction of the specific chemical substance with the sensor material through selective binding, adsorption and permeation of analyte. This research focuses on development...
Show moreThe role of sensor technology is obvious in improvement and optimization of many industrial processes. The sensor films, which are considered the core of chemical sensors, have the capability to detect the presence and concentration of a specific chemical substance. Such sensor films achieve selectivity by detecting the interaction of the specific chemical substance with the sensor material through selective binding, adsorption and permeation of analyte. This research focuses on development and verification of a comprehensive mathematical model of mixed metal oxide thin film growth using spray pyrolysis technique (SPT). An experimental setup is used to synthesize mixed metal oxide films on a heated substrate. The films are analyzed using a variety of characterization tools. The results are used to validate the mathematical model. There are three main stages to achieve this goal: 1) A Lagrangian-Eulerian method is applied to develop a CFD model of atomizing multi-component solution. The model predicts droplet characteristics in flight, such as spatial distribution of droplet size and concentration. 2) Upon reaching the droplets on the substrate, a mathematical model of multi-phase transport and chemical reaction phenomena in a single droplet is developed and used to predict the deposition of thin film. The various stages of droplet morphology associated with surface energy and evaporation are predicted. 3) The processed films are characterized for morphology and chemical composition (SEM, XPS) and the data are used to validate the models as well as investigate the influence of process parameters on the structural characteristics of mixed metal oxide films. The structural characteristics are investigated of nano structured thin films comprising of ZnO, SnO2, ZnO+In2O3 and SnO2+In2O3 composites. The model adequately predicts the size distribution and film thickness when the nanocrystals are well-structured at the controlled temperature and concentration.
Show less - Date Issued
- 2014
- Identifier
- CFE0005817, ucf:50048
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005817
- Title
- GIANT MAGNETO-IMPEDANCE EFFECT IN THIN FILM LAYERED STRUCTURES.
- Creator
-
Borge, Amruta, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
Recently, the giant magneto impedance (GMI) effect has been studied extensively because of its potential applications in sensor elements. The focus of this thesis work is to explore different compositions and processing conditions for CoSiB and NiFe thin films to obtain the soft magnetic properties and to evaluate their potential use in GMI sensor applications. Prior to this study, an MH Looper was constructed, which was extremely important and provided the basic magnetic characterization of...
Show moreRecently, the giant magneto impedance (GMI) effect has been studied extensively because of its potential applications in sensor elements. The focus of this thesis work is to explore different compositions and processing conditions for CoSiB and NiFe thin films to obtain the soft magnetic properties and to evaluate their potential use in GMI sensor applications. Prior to this study, an MH Looper was constructed, which was extremely important and provided the basic magnetic characterization of the many ferromagnetic thin films deposited during this work. The CoSiB films were co-sputter deposited in an ultra high vacuum chamber. Films with different relative compositions of Co, Si and B were deposited by varying respective target powers. Different substrate bias conditions were also studied. Also, NiFe films were studied by varying relative composition by variation of target powers and also by variation deposition pressure. The effect of annealing was also studied. The magnetic and electrical characterization of these films was done using the MH Looper, Quad-pro four-point probe resistivity measurement, and Low Frequency Impedance analyzer HP4192A. Finally, CoSiB films with soft magnetic properties were obtained with optimized set of deposition parameters. A sample for GMI measurement was prepared, consisting of a multilayer thin film structure: CoSiB 200nm/ Cu 400nm / CoSiB 200nm. A serpentine pattern was generated on this film by photolithography technique. After obtaining the pattern, GMI studies were performed using LF impedance analyzer. This instrument was capable of providing the drive frequency in the range of 5Hz to 13MHz, but the impedance mis-match of the test fixture limited useful measurements to 9MHz. The highest GMI ratio observed was 6.2% at a 21 Oe longitudinal magnetic bias field at an 8MHz drive frequency. Transverse permeability measurements were performed by the use of two magnetic field axes of the MH Looper. The permeability behavior of the device reflects the impedance behavior with the external field. Permeability measurements were also performed on NiFe GMI Device with NiFe 600nm/ Cu 1200nm / NiFe 600nm sandwich structure. This sample was not successfully patterned and hence the impedance measurements could not be performed. Correlation of the magnetic properties of the structures was studied with the impedance responses.
Show less - Date Issued
- 2005
- Identifier
- CFE0000454, ucf:46394
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000454
- Title
- EFFECT OF ANNEALING ON COPPER THIN FILMS:THE CLASSICAL SIZE EFFECT AND AGGLOMERATION.
- Creator
-
Gadkari, Parag, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
With continued shrinking of CMOS technology to reduce the gate delay times, an increase in the resistivity of the metal corresponding to the wire dimension is a concern. This phenomenon of increase in resistivity with decreasing dimension of the thin metallic film or interconnect is known as the "classical size effect". Various theories have been postulated to explain the phenomenon of classical size effect; these theories can be broadly classified as resistivity due to scattering arising...
Show moreWith continued shrinking of CMOS technology to reduce the gate delay times, an increase in the resistivity of the metal corresponding to the wire dimension is a concern. This phenomenon of increase in resistivity with decreasing dimension of the thin metallic film or interconnect is known as the "classical size effect". Various theories have been postulated to explain the phenomenon of classical size effect; these theories can be broadly classified as resistivity due to scattering arising from surface and grain boundaries. The total resistivity of metals depends on the electron scattering due to impurities, phonons, surfaces, grain boundaries, and other crystal defects. Managing the size effect in a practical and manufacturing way is of major concern to the microelectronics industry. Since each of the processes (phonon, surface and grain boundary scattering) adds to the resistivity and are interrelated, it further complicates managing the size effect. However, these effects have been separately studied. In this work, the effect of annealing on the classical size effect in Cu thin films deposited on SiO2 substrate is investigated. Polycrystalline Cu thin films having thicknesses in the range of 10nm to 200nm were ultra high vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150°C to 800°C in argon and argon+3% hydrogen gases. The un-annealed Cu thin films exhibit higher resistivity than the annealed films. The resistivities of un-annealed films were in good agreement with Mayadas and Shatzkes model. When annealed the films undergoes grain growth resulting in lowering the resistivities by about 20%-30% thereby confirming the role of grain size on resistivity of the film. However, there is a limit to annealing, i.e. agglomeration phenomenon. Agglomeration is a thermally activated process resulting in a reduction of the free energy of the filmsubstrate system and can occur well below the melting point of the material by surface and interfacial diffusion. The reduction of film-substrate interfacial energy, film-surface interfacial energy and stresses within the film are possible driving forces for agglomeration. This work also includes the study of agglomeration phenomenon. The agglomeration behavior of Cu is investigated and compared with that of Ru, Au and Pt thin films with thicknesses in the range of 10 nm to 100 nm UHV deposited on thermally grown SiO2 substrate. The films were annealed at temperatures in the range of 150°C to 800°C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play important part in deciding the mode of void growth in Au and Pt thin films. Lastly, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer, which in turn improves the resistivity of the thin film due to prolonged grain growth without film breakup.
Show less - Date Issued
- 2005
- Identifier
- CFE0000496, ucf:46363
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000496
- Title
- REVITALIZING "THE ROCKY HORROR SHOW" THROUGH GOSPEL MUSIC.
- Creator
-
Taisey, Kip, Chicurel, Steven, University of Central Florida
- Abstract / Description
-
In Spring 2007, the University of Central Florida (UCF) Department of Theatre mounted a production of "The Rocky Horror Show." This thesis focuses on the author's process of using the gospel music style to revitalize "The Rocky Horror Show," a cult musical. The author uses defining characteristics of the cult film genre to establish a set of guidelines. "The Rocky Horror Picture Show" is the movie version of the stage musical and is responsible for the show's inevitable cult status....
Show moreIn Spring 2007, the University of Central Florida (UCF) Department of Theatre mounted a production of "The Rocky Horror Show." This thesis focuses on the author's process of using the gospel music style to revitalize "The Rocky Horror Show," a cult musical. The author uses defining characteristics of the cult film genre to establish a set of guidelines. "The Rocky Horror Picture Show" is the movie version of the stage musical and is responsible for the show's inevitable cult status. He discusses the history and journey of "The Rocky Horror Show" and how audience participation was integral in establishing this landmark musical. The reader observes the process used in rearranging "The Rocky Horror Show" score from start to finish and recordings used as influence throughout. Although this is a discussion of a musical process, this portion of the document is written in terms for all to understand, and a glossary of terms is provided for those that are unsure of certain vocabulary. With a show that is well established, one must be careful when making stylistic changes. The author took this into consideration when arranging the score and rationalizes through a discussion of gospel music history, key gospel elements apparent throughout the score, and how the essence of Richard O'Brien's music remains intact.
Show less - Date Issued
- 2007
- Identifier
- CFE0001732, ucf:47303
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001732
- Title
- INVESTIGATION OF REACTIVELY SPUTTERED SILICON CARBON BORON NITRIDE (SICBN) THIN FILMS FOR HIGH TEMPERATURE APPLICATIONS.
- Creator
-
Vijayakumar, Arun, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
The increasing demand for efficient energy systems in the last decade has brought about the development of advanced sensor systems that utilize advance detection methods to help in preventive maintenance of these essential systems. These usually are needed in hard to access environments where conditions are extreme and unfit for human interaction. Thin film based sensors deposited directly on the surfaces exposed to harsh environments can serve as ideal means of measuring the temperature of...
Show moreThe increasing demand for efficient energy systems in the last decade has brought about the development of advanced sensor systems that utilize advance detection methods to help in preventive maintenance of these essential systems. These usually are needed in hard to access environments where conditions are extreme and unfit for human interaction. Thin film based sensors deposited directly on the surfaces exposed to harsh environments can serve as ideal means of measuring the temperature of the component during operation. They provide the basic advantage of proximity to the surface and hence accurate measurement of the surface temperature. The low mass size ratio provides the additional advantage of least interference to system operation. The four elements consisting of Si, C, B, and N can be used to form binary, ternary and quaternary compounds like carbides, nitrides, which are chemically and thermally stable with extreme hardness, thermal conductivity and can be doped n- and p-type. Hence these compounds can be potential candidates for high temperature applications. This research is focused on studying sputtering as a candidate to obtain thin SiCBN films. The deposition and characterization of amorphous thin films of silicon boron carbon nitride (SiCBN) is reported. The SiCBN thin films were deposited in a radio frequency (rf) magnetron sputtering system using reactive co-sputtering of silicon carbide (SiC) and boron nitride (BN) targets. Films of different compositions were deposited by varying the ratios of argon and nitrogen gas in the sputtering ambient. Investigation of the oxidation kinetics of these materials was performed to study high temperature compatibility of the material. Surface characterization of the deposited films was performed using X-ray photoelectron spectroscopy and optical profilometry. Studies reveal that the chemical state of the films is highly sensitive to nitrogen flow ratios during sputtering. Surface analysis shows that smooth and uniform SiCBN films can be produced using this technique. Carbon and nitrogen content in the films seem to be sensitive to annealing temperatures. However depth profile studies reveal certain stoichiometric compositions to be stable after high temperature anneal up to 900ºC. Electrical and optical characteristics are also investigated with interesting results. Finally a metal semiconductor metal structure based optoelectronic device is demonstrated with excellent performance improvement over standard silicon based devices under higher temperature conditions.
Show less - Date Issued
- 2007
- Identifier
- CFE0001914, ucf:47490
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001914
- Title
- EFFECT OF COMPOSITION, MORPHOLOGY AND SEMICONDUCTING PROPERTIES ON THE EFFICIENCY OF CUIN1-XGAXSE2-YSY THIN-FILM SOLAR CELLS PREPARED BY RAPID THERMAL PROCESSING.
- Creator
-
Kulkarni, Sachin, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
A rapid thermal processing (RTP) reactor for the preparation of graded CuIn1-xGaxSe2-ySy (CIGSeS) thin-film solar cells has been designed, assembled and is being used at the Photovoltaic Materials Laboratory of the Florida Solar Energy Center. CIGSeS films having the optimum composition, morphology, and semiconducting properties were prepared using RTP. Initially films having various Cu/(In+Ga) ratios were prepared. In the next step selenium incorporation in these films was optimized,...
Show moreA rapid thermal processing (RTP) reactor for the preparation of graded CuIn1-xGaxSe2-ySy (CIGSeS) thin-film solar cells has been designed, assembled and is being used at the Photovoltaic Materials Laboratory of the Florida Solar Energy Center. CIGSeS films having the optimum composition, morphology, and semiconducting properties were prepared using RTP. Initially films having various Cu/(In+Ga) ratios were prepared. In the next step selenium incorporation in these films was optimized, followed by sulfur incorporation in the surface to increase the bandgap at the surface. The compositional gradient of sulfur was fine-tuned so as to increase the conversion efficiency. Materials properties of these films were characterized by optical microscopy, SEM, AFM, EDS, XRD, GIXRD, AES, and EPMA. The completed cells were extensively studied by electrical characterization. Current-voltage (I-V), external and internal quantum efficiency (EQE and IQE), capacitance-voltage (C-V), and light beam induced current (LBIC) analysis were carried out. Current Density (J)-Voltage (V) curves were obtained at different temperatures. The temperature dependence of the open circuit voltage and fill factor has been estimated. The bandgap value calculated from the intercept of the linear extrapolation was ~1.1-1.2 eV. Capacitance-voltage analysis gave a carrier density of ~4.0 x 1015 cm-3. Semiconductor properties analysis of CuIn1-xGaxSe2-ySy (CIGSeS) thin-film solar cells has been carried out. The values of various PV parameters determined using this analysis were as follows: shunt resistance (Rp) of ~510 Ohms-cm2 under illumination and ~1300 Ohms-cm2 in dark, series resistance (Rs) of ~0.8 Ohms-cm2 under illumination and ~1.7 Ohms-cm2 in dark, diode quality factor (A) of 1.87, and reverse saturation current density (Jo) of 1.5 x 10-7A cm-2. The efficiency of 12.78% obtained during this research is the highest efficiency obtained by any University or National Lab for copper chalcopyrite solar cells prepared by RTP. CIGS2 cells have a better match to the solar spectrum due to their comparatively higher band-gap as compared to CIGS cells. However, they are presently limited to efficiencies below 13% which is considerably lower than that of CIGS cells of 19.9%. One of the reasons for this lower efficiency is the conduction band offset between the CIGS2 absorber layer and the CdS heterojunction partner layer. The band offset value between CIGS2 and CdS was estimated by a combination of ultraviolet photoelectron spectroscopy (UPS) and Inverse Photoemission Spectroscopy (IPES) to be -0.45 eV, i.e. a cliff is present between these two layers, enhancing the recombination at the junction, this limits the efficiency of CIGS2 wide-gap chalcopyrite solar cells.
Show less - Date Issued
- 2008
- Identifier
- CFE0002467, ucf:47728
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002467
- Title
- N MULTILAYER THIN FILM REACTIONS TO FORM L10 FEPT AND EXCHANGE SPRING MAGNETS.
- Creator
-
Yao, Bo, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
FePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of n...
Show moreFePt films with the L10 phase have potential applications for magnetic recording and permanent magnets due to its high magnetocrystalline anisotropy energy density. Heat treatment of n multilayer films is one approach to form the L10 FePt phase through a solid state reaction. This thesis has studied the diffusion and reaction of n multilayer films to form the L10 FePt phase and has used this understanding to construct exchange spring magnets. The process-structure-property relations of n multilayer films were systematically examined. The transmission electron microscopy (TEM) study of the annealed multilayers indicates that the Pt layer grows at the expense of Fe during annealing, forming a disordered fcc FePt phase by the interdiffusion of Fe into Pt. This thickening of the fcc Pt layer can be attributed to the higher solubilities of Fe into fcc Pt, as compared to the converse. For the range of film thickness studied, a continuous L10 FePt product layer that then thickens with further annealing is not found. Instead, the initial L10 FePt grains are distributed mainly on the grain boundaries within the fcc FePt layer and at the Fe/Pt interfaces and further transformation of the sample to the ordered L10 FePt phase proceeds coupled with the growth of the initial L10 FePt grains. A comprehensive study of annealed n films is provided concerning the phase fraction, grain size, nucleation/grain density, interdiffusivity, long-range order parameter, and texture, as well as magnetic properties. A method based on hollow cone dark field TEM is introduced to measure the volume fraction, grain size, and density of ordered L10 FePt phase grains in the annealed films, and low-angle X-ray diffraction is used to measure the effective Fe-Pt interdiffusivity. The process-structure-properties relations of two groups of samples with varying substrate temperature and periodicity are reported. The results demonstrate that the processing parameters (substrate temperature, periodicity) have a strong influence on the structure (effective interdiffusivity, L10 phase volume fraction, grain size, and density) and magnetic properties. The correlation of these parameters suggests that the annealed n multilayer films have limited nuclei, and the subsequent growth of L10 phase is very important to the extent of ordered phase formed. A correlation between the grain size of fcc FePt phase, grain size of the L10 FePt phase, the L10 FePt phase fraction, and magnetic properties strongly suggests that the phase transformation of fccL10 is highly dependent on the grain size of the parent fcc FePt phase. A selective phase growth model is proposed to explain the phenomena observed. An investigation of the influence of total film thickness on the phase formation of the L10 FePt phase in n multilayer films and a comparison of this to that of FePt co-deposited alloy films is also conducted. A general trend of greater L10 phase formation in thicker films was observed in both types of films. It was further found that the thickness dependence of the structure and of the magnetic properties in n multilayer films is much stronger than that in FePt alloy films. This is related to the greater chemical energy contained in n films than FePt alloy films, which is helpful for the L10 FePt phase growth. However, the initial nucleation temperature of n multilayers and co-deposited alloy films was found to be similar. An investigation of L10 FePt-based exchange spring magnets is presented based on our understanding of the L10 formation in n multilayer films. It is known that exchange coupling is an interfacial magnetic interaction and it was experimentally shown that this interaction is limited to within several nanometers of the interface. A higher degree of order of the hard phase is shown to increase the length scale slightly. Two approaches can be used to construct the magnets. For samples with composition close to stoichiometric L10 FePt, the achievement of higher energy product is limited by the average saturation magnetization, and therefore, a lower annealing temperature is beneficial to increase the energy product, allowing a larger fraction of disordered phase. For samples with higher Fe concentration, the (BH)max is limited by the low coercivity of annealed sample, and a higher annealing temperature is beneficial to increase the energy product.
Show less - Date Issued
- 2008
- Identifier
- CFE0002416, ucf:47749
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002416