Current Search: filter (x)
Pages
-
-
Title
-
A STUDY OF EQUATORIAL IONOPSHERIC VARIABILITY USING SIGNAL PROCESSING TECHNIQUES.
-
Creator
-
wang, xiaoni, Eastes, Richard, University of Central Florida
-
Abstract / Description
-
The dependence of equatorial ionosphere on solar irradiances and geomagnetic activity are studied in this dissertation using signal processing techniques. The statistical time series, digital signal processing and wavelet methods are applied to study the ionospheric variations. The ionospheric data used are the Total Electron Content (TEC) and the critical frequency of the F2 layer (foF2). Solar irradiance data are from recent satellites, the Student Nitric Oxide Explorer (SNOE) satellite and...
Show moreThe dependence of equatorial ionosphere on solar irradiances and geomagnetic activity are studied in this dissertation using signal processing techniques. The statistical time series, digital signal processing and wavelet methods are applied to study the ionospheric variations. The ionospheric data used are the Total Electron Content (TEC) and the critical frequency of the F2 layer (foF2). Solar irradiance data are from recent satellites, the Student Nitric Oxide Explorer (SNOE) satellite and the Thermosphere Ionosphere Mesosphere Energetics Dynamics (TIMED) satellite. The Disturbance Storm-Time (Dst) index is used as a proxy of geomagnetic activity in the equatorial region. The results are summarized as follows. (1) In the short-term variations < 27-days, the previous three days solar irradiances have significant correlation with the present day ionospheric data using TEC, which may contribute 18% of the total variations in the TEC. The 3-day delay between solar irradiances and TEC suggests the effects of neutral densities on the ionosphere. The correlations between solar irradiances and TEC are significantly higher than those using the F10.7 flux, a conventional proxy for short wavelength band of solar irradiances. (2) For variations < 27 days, solar soft X-rays show similar or higher correlations with the ionosphere electron densities than the Extreme Ultraviolet (EUV). The correlations between solar irradiances and foF2 decrease from morning (0.5) to the afternoon (0.1). (3) Geomagnetic activity plays an important role in the ionosphere in short-term variations < 10 days. The average correlation between TEC and Dst is 0.4 at 2-3, 3-5, 5-9 and 9-11 day scales, which is higher than those between foF2 and Dst. The correlations between TEC and Dst increase from morning to afternoon. The moderate/quiet geomagnetic activity plays a distinct role in these short-term variations of the ionosphere (~0.3 correlation).
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001602, ucf:47188
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001602
-
-
Title
-
MICRO-OPTIC-SPECTRAL-SPATIAL-ELEMENTS (MOSSE).
-
Creator
-
Mehta, Alok, Johnson, Eric, University of Central Florida
-
Abstract / Description
-
Over a wide range of applications, optical systems have utilized conventional optics in order to provide the ability to engineer the properties of incident infra-red fields in terms of the transmitted field spectral, spatial, amplitude, phase, and polarization characteristics. These micro/nano-optical elements that provide specific optical functionality can be categorized into subcategories of refractive, diffractive, multi-layer thin film dichroics, 3-D photonic crystals, and polarization...
Show moreOver a wide range of applications, optical systems have utilized conventional optics in order to provide the ability to engineer the properties of incident infra-red fields in terms of the transmitted field spectral, spatial, amplitude, phase, and polarization characteristics. These micro/nano-optical elements that provide specific optical functionality can be categorized into subcategories of refractive, diffractive, multi-layer thin film dichroics, 3-D photonic crystals, and polarization gratings. The feasibility of fabrication, functionality, and level of integration which these elements can be used in an optical system differentiate which elements are more compatible with certain systems than others. With enabling technologies emerging allowing for a wider range of options when it comes to lithographic nano/micro-patterning, dielectric growth, and transfer etching capabilities, optical elements that combine functionalities of conventional optical elements can be realized. Within this one class of optical elements, it is possible to design and fabricate components capable of tailoring the spectral, spatial, amplitude, phase, and polarization characteristics of desired fields at different locations within an optical system. Optical transmission filters, polarization converting elements, and spectrally selective reflecting components have been investigated over the course of this dissertation and have been coined MOSSE,' which is an acronym for micro-optic-spectral-spatial-elements. Each component is developed and fabricated on a wafer scale where the thin film deposition, lithographic exposure, and transfer etching stages are decoupled from each other and performed in a sequential format. This facilitates the ability to spatially vary the optical characteristics of the different MOSSE structures across the surface of the wafer itself.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001962, ucf:47457
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001962
-
-
Title
-
ROBUST ESTIMATION AND ADAPTIVE GUIDANCE FOR MULTIPLE UAVS' COOPERATION.
-
Creator
-
Allen, Randal, Xu, Chengying, University of Central Florida
-
Abstract / Description
-
In this paper, an innovative cooperative navigation method is proposed for multiple Unmanned Air Vehicles (UAVs) based on online target position measurements. These noisy position measurement signals are used to estimate the target's velocity for non-maneuvering targets or the target's velocity and acceleration for maneuvering targets. The estimator's tracking capability is physically constrained due to the target's kinematic limitations and therefore is potentially improvable...
Show moreIn this paper, an innovative cooperative navigation method is proposed for multiple Unmanned Air Vehicles (UAVs) based on online target position measurements. These noisy position measurement signals are used to estimate the target's velocity for non-maneuvering targets or the target's velocity and acceleration for maneuvering targets. The estimator's tracking capability is physically constrained due to the target's kinematic limitations and therefore is potentially improvable by designing a higher performance estimator. An H-infinity filter is implemented to increase the robustness of the estimation accuracy. The performance of the robust estimator is compared to a Kalman filter and the results illustrate more precise estimation of the target's motion in compensating for surrounding noises and disturbances. Furthermore, an adaptive guidance algorithm, based on the seeker's field-of-view and linear region, is used to deliver the pursuer to the maneuvering target. The initial guidance algorithm utilizes the velocity pursuit guidance law because of its insensitivity to target motion; while the terminal guidance algorithm leverages the acceleration estimates (from the H-infinity filter) to augment the proportional navigation guidance law for increased accuracy in engaging maneuvering targets. The main objective of this work is to develop a robust estimator/tracker and an adaptive guidance algorithm which are directly applicable UAVs.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002535, ucf:47650
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002535
-
-
Title
-
EFFICIENT CONE BEAM RECONSTRUCTION FOR THE DISTORTED CIRCLE AND LINE TRAJECTORY.
-
Creator
-
Konate, Souleymane, Katsevich, Alexander, University of Central Florida
-
Abstract / Description
-
We propose an exact filtered backprojection algorithm for inversion of the cone beam data in the case when the trajectory is composed of a distorted circle and a line segment. The length of the scan is determined by the region of interest , and it is independent of the size of the object. With few geometric restrictions on the curve, we show that we have an exact reconstruction. Numerical experiments demonstrate good image quality.
-
Date Issued
-
2009
-
Identifier
-
CFE0002530, ucf:47669
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002530
-
-
Title
-
Seepage and Stability Analysis of the Earth Dams under Drawdown Conditions by using the Finite Element Method.
-
Creator
-
Al-Labban, Salama, Chopra, Manoj, Mackie, Kevin, Wang, Dingbao, Elshennawy, Ahmad, University of Central Florida
-
Abstract / Description
-
One of the major concerns in the behavior of an earth dam is the change in the exit gradient and the impact on the slope stability under drawdown conditions. Drawdown can cause increased seepage forces on the upstream slope which may result in the movement of soil particles in the flow direction and cause erosion problems. In this research, a numerical approach, based on the finite element method (FEM) is used to analyze the seepage through the dam and its foundation to study exit gradients...
Show moreOne of the major concerns in the behavior of an earth dam is the change in the exit gradient and the impact on the slope stability under drawdown conditions. Drawdown can cause increased seepage forces on the upstream slope which may result in the movement of soil particles in the flow direction and cause erosion problems. In this research, a numerical approach, based on the finite element method (FEM) is used to analyze the seepage through the dam and its foundation to study exit gradients and slope stability under both steady-state and transient conditions. The results show that a central core is important in reducing the flux through the dam. Constructing a cutoff under the core further increases the efficiency of the core and lowers the phreatic line. However, it is seen that the submerged weight increases when the earth dam with a core or with a complete cutoff which causes higher water flux to flow out of the dam under the drawdown condition. The exit gradient at the upstream slope may reach critical levels and cause failure of the dam due to erosion. Adding an upstream filter is studied as a possible solution to this problem. Two configurations of the filters are modeled and the slope filter configuration performed best in reducing the exit gradient at the upstream face. A low permeability core with a cutoff increases deformation of the soil because of increased saturated areas in the upstream region. The factor of safety of the slope is also reduced because of the increased buoyancy of the soil at the upstream side of the dam. The soil properties of the upstream filter have a significant influence on the slope stability against sliding. An upstream slope filter increases the stability of the slope while a central filter decreases it.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007303, ucf:52167
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007303
-
-
Title
-
Injection-locked semiconductor lasers for realization of novel RF photonics components.
-
Creator
-
Hoghooghi, Nazanin, Delfyett, Peter, Likamwa, Patrick, Li, Guifang, Malocha, Donald, University of Central Florida
-
Abstract / Description
-
This dissertation details the work has been done on a novel resonant cavity linear interferometric modulator and a direct phase detector with channel filtering capability using injection-locked semiconductor lasers for applications in RF photonics. First, examples of optical systems whose performance can be greatly enhanced by using a linear intensity modulator are presented and existing linearized modulator designs are reviewed. The novel linear interferometric optical intensity modulator...
Show moreThis dissertation details the work has been done on a novel resonant cavity linear interferometric modulator and a direct phase detector with channel filtering capability using injection-locked semiconductor lasers for applications in RF photonics. First, examples of optical systems whose performance can be greatly enhanced by using a linear intensity modulator are presented and existing linearized modulator designs are reviewed. The novel linear interferometric optical intensity modulator based on an injection-locked laser as an arcsine phase modulator is introduced and followed by numerical simulations of the phase and amplitude response of an injection-locked semiconductor laser. The numerical model is then extended to study the effects of the injection ratio, nonlinear cavity response, depth of phase and amplitude modulation on the spur-free dynamic range of a semiconductor resonant cavity linear modulator. Experimental results of the performance of the linear modulator implemented with a multi-mode Fabry-Perot semiconductor laser as the resonant cavity are shown and compared with the theoretical model. The modulator performance using a vertical cavity surface emitting laser as the resonant cavity is investigated as well. Very low V? in the order of 1 mV, multi-gigahertz bandwidth (-10 dB bandwidth of 5 GHz) and a spur-free dynamic range of 120 dB.Hz2/3 were measured directly after the modulator. The performance of the modulator in an analog link is experimentally investigated and the results show no degradation of the modulator linearity after a 1 km of SMF.The focus of the work then shifts to applications of an injection-locked semiconductor laser as a direct phase detector and channel filter. This phase detection technique does not require a local oscillator. Experimental results showing the detection and channel filtering capability of an injection-locked semiconductor diode laser in a three channel system are shown. The detected electrical signal has a signal-to-noise ratio better than 60 dB/Hz. In chapter 4, the phase noise added by an injection-locked vertical cavity surface emitting laser is studied using a self-heterodyne technique. The results show the dependency of the added phase noise on the injection ratio and detuning frequency. The final chapter outlines the future works on the linear interferometric intensity modulator including integration of the modulator on a semiconductor chip and the design of the modulator for input pulsed light.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004385, ucf:49368
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004385
-
-
Title
-
Phylogenetic Community Structure of Aquatic Beetle Assemblages in a Multi-Wetland Experiment.
-
Creator
-
Kelly, Sandor, Jenkins, David, Parkinson, Christopher, Crampton, William, Song, Hojun, University of Central Florida
-
Abstract / Description
-
Phylogenetic Community Structure (PCS) metrics are becoming more common in community ecology. PCS metrics estimate the phylogenetic relatedness among members of an ecological community or assemblage. If ecological traits are conserved, then phylogenetic clustering (i.e., taxa are more closely related than expected by chance) indicates habitat filtering as the key process in community assembly. On the other hand, a pattern of phylogenetic overdispersion (i.e., taxa are more distantly related...
Show morePhylogenetic Community Structure (PCS) metrics are becoming more common in community ecology. PCS metrics estimate the phylogenetic relatedness among members of an ecological community or assemblage. If ecological traits are conserved, then phylogenetic clustering (i.e., taxa are more closely related than expected by chance) indicates habitat filtering as the key process in community assembly. On the other hand, a pattern of phylogenetic overdispersion (i.e., taxa are more distantly related than expected by chance) suggests competition is dominant. Most studies to date have used PCS of unmanipulated ecosystems, but the value of PCS metrics will be best revealed in experiments. This project used PCS for aquatic beetle (Coleoptera) assemblages in experimentally manipulated seasonal wetlands on a cattle ranch in south-central Florida, and compared PCS metrics to standard ecological metrics. Wetlands were experimentally treated with all combinations of pasture management, fencing to exclude cattle, and controlled burning during 2006-2009. Beetle assemblages in fenced wetlands were significantly more overdispersed compared to non-fenced wetlands, suggesting that this treatment decreases habitat filtering, causing competition to become the dominant process in community formation. There was also a significant pasture x fence x burn interaction effect, with assemblages in wetlands differing in PCS depending on what combination of the three treatments were applied. Phylogenetic Diversity (PD (-) a measure of branch length of a community or assemblage on a phylogenetic tree) was highly correlated with genera richness (number of genera), and these metrics along with the expected number of genera (D (-) an ecological diversity index) found significant differences among burn treatments and a pasture x burn interaction. The results of this study indicate that PCS metrics complement classical ecological methods and should be widely applied.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004394, ucf:49388
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004394
-
-
Title
-
Performance optimization of lateral-mode thin-film piezoelectric-on-substrate resonant systems.
-
Creator
-
Fatemi, Hedy, Abdolvand, Reza, Sundaram, Kalpathy, Malocha, Donald, Gong, Xun, Cho, Hyoung Jin, University of Central Florida
-
Abstract / Description
-
The main focus of this dissertation is to characterize and improve the performance of thin-film piezoelectric-on-substrate (TPoS) lateral-mode resonators and filters. TPoS is a class of piezoelectric MEMS devices which benefits from the high coupling coefficient of the piezoelectric transduction mechanism while taking advantage of superior acoustic properties of a substrate. The use of lateral-mode TPoS designs allows for fabrication of dispersed-frequency filters on a single substrate, thus...
Show moreThe main focus of this dissertation is to characterize and improve the performance of thin-film piezoelectric-on-substrate (TPoS) lateral-mode resonators and filters. TPoS is a class of piezoelectric MEMS devices which benefits from the high coupling coefficient of the piezoelectric transduction mechanism while taking advantage of superior acoustic properties of a substrate. The use of lateral-mode TPoS designs allows for fabrication of dispersed-frequency filters on a single substrate, thus significantly reducing the size and manufacturing cost of devices. TPoS filters also offer a lower temperature coefficient of frequency, and better power handling capability compared to rival technologies all in a very small footprint.Design and fabrication process of the TPoS devices is discussed. Both silicon and diamond substrates are utilized for fabrication of TPoS devices and results are compared. Specifically, the superior acoustic properties of nanocrystalline diamond in scaling the frequency and energy density of the resonators is highlighted in comparison with silicon. The performance of TPoS devices in a variety of applications is reported. These applications include lateral-mode TPoS filters with record low IL values (as low as 2dB) and fractional bandwidth up to 1%, impedance transformers, very low phase noise oscillators, and passive wireless temperature sensors.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005945, ucf:50805
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005945
-
-
Title
-
Performance Evaluation of Two Silt Fence Geosynthetic Fabrics During and After Rainfall Event.
-
Creator
-
Dubinsky, Gregg, Chopra, Manoj, Randall, Andrew, Wang, Dingbao, Gogo-Abite, Ikiensinma, University of Central Florida
-
Abstract / Description
-
Silt fence is one of the most widely used perimeter control devices and is considered an industry standard for use in the control of sediment transport from construction sites. Numerous research studies have been conducted on the use of silt fence as a perimeter control, including a number of studies involving controlled laboratory flume tests and outdoor tests performed in the field on construction sites with actual monitored storm events. In field tests, due to the random and uncontrollable...
Show moreSilt fence is one of the most widely used perimeter control devices and is considered an industry standard for use in the control of sediment transport from construction sites. Numerous research studies have been conducted on the use of silt fence as a perimeter control, including a number of studies involving controlled laboratory flume tests and outdoor tests performed in the field on construction sites with actual monitored storm events. In field tests, due to the random and uncontrollable nature of real storm events and field conditions, studies have shown difficulty in evaluating silt fence performance. These field studies have shown the need for performance testing of silt fence in a more controlled environment, which can also simulate the actual use and performance in the field. This research, which is a continuation of ongoing research on silt fence fabrics at UCF Stormwater and Management Academy, was conducted in order to evaluate silt fence performance under simulated field conditions. Presented in this thesis are evaluation of two silt fence fabrics, a woven (ASR 1400) fabric and nonwoven (BSRF) fabric. Both fabrics were installed separately on a tilted test bed filled with a silty-sand soil and subjected to simulated rainfall.Previous field studies on the performance of silt fence fabrics have evaluated the turbidity and sediment removal efficiencies only after the rain event, with the assumption that the efficiency values represent the true overall performance of silt fence. The results of this study revealed that the turbidity and suspended sediment performance efficiencies of silt fence were significantly affected by the time of sampling. The performance efficiencies during rainfall remained less than 55 percent, however, after the rainfall event ended, the performance efficiencies increased over time, reaching performance efficiency upwards of 90 percent. The increase in efficiency after rainfall was due to the constant or decreasing ponding depth behind the silt fence, increased filtration due to fabric clogging, and sedimentation of suspended particles.The nonwoven fabric was found to achieve higher removal efficiencies and flow-through rates both during and after the rain event when compared with the woven fabric. However, over the entire test duration (during and after rainfall combined), the projected overall efficiencies of both fabrics were similar. The projected overall average turbidity performance efficiencies of the woven and nonwoven silt fence fabrics was 80 and 78 percent, respectively. Both fabric types also achieved comparable overall average suspended sediment concentration efficiencies of 79 percent. This result leads to the conclusion that silt fence performance in the field is dependent on three main processes: filtration efficiency occurring during the rain event, filtration and sedimentation efficiency occurring after the rainfall event, and flow-through rate of the silt fence fabrics. Decreases in the flow-through rate lead to increases in the overall efficiency. This thesis quantifies the different mechanisms by which these processes contribute to the overall efficiency of the silt fence system and shows how these processes are affected by different conditions such as the degree of embankment slope and rainfall intensity.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005158, ucf:50688
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005158
-
-
Title
-
Probabilistic-Based Computing Transformation with Reconfigurable Logic Fabrics.
-
Creator
-
Alawad, Mohammed, Lin, Mingjie, DeMara, Ronald, Mikhael, Wasfy, Wang, Jun, Das, Tuhin, University of Central Florida
-
Abstract / Description
-
Effectively tackling the upcoming (")zettabytes(") data explosion requires a huge quantum leapin our computing power and energy efficiency. However, with the Moore's law dwindlingquickly, the physical limits of CMOS technology make it almost intractable to achieve highenergy efficiency if the traditional (")deterministic and precise(") computing model still dominates.Worse, the upcoming data explosion mostly comprises statistics gleaned from uncertain,imperfect real-world environment. As such...
Show moreEffectively tackling the upcoming (")zettabytes(") data explosion requires a huge quantum leapin our computing power and energy efficiency. However, with the Moore's law dwindlingquickly, the physical limits of CMOS technology make it almost intractable to achieve highenergy efficiency if the traditional (")deterministic and precise(") computing model still dominates.Worse, the upcoming data explosion mostly comprises statistics gleaned from uncertain,imperfect real-world environment. As such, the traditional computing means of first-principlemodeling or explicit statistical modeling will very likely be ineffective to achieveflexibility, autonomy, and human interaction. The bottom line is clear: given where we areheaded, the fundamental principle of modern computing(-)deterministic logic circuits canflawlessly emulate propositional logic deduction governed by Boolean algebra(-)has to bereexamined, and transformative changes in the foundation of modern computing must bemade.This dissertation presents a novel stochastic-based computing methodology. It efficientlyrealizes the algorithmatic computing through the proposed concept of Probabilistic DomainTransform (PDT). The essence of PDT approach is to encode the input signal asthe probability density function, perform stochastic computing operations on the signal inthe probabilistic domain, and decode the output signal by estimating the probability densityfunction of the resulting random samples. The proposed methodology possesses manynotable advantages. Specifically, it uses much simplified circuit units to conduct complexoperations, which leads to highly area- and energy-efficient designs suitable for parallel processing.Moreover, it is highly fault-tolerant because the information to be processed isencoded with a large ensemble of random samples. As such, the local perturbations of itscomputing accuracy will be dissipated globally, thus becoming inconsequential to the final overall results. Finally, the proposed probabilistic-based computing can facilitate buildingscalable precision systems, which provides an elegant way to trade-off between computingaccuracy and computing performance/hardware efficiency for many real-world applications.To validate the effectiveness of the proposed PDT methodology, two important signal processingapplications, discrete convolution and 2-D FIR filtering, are first implemented andbenchmarked against other deterministic-based circuit implementations. Furthermore, alarge-scale Convolutional Neural Network (CNN), a fundamental algorithmic building blockin many computer vision and artificial intelligence applications that follow the deep learningprinciple, is also implemented with FPGA based on a novel stochastic-based and scalablehardware architecture and circuit design. The key idea is to implement all key componentsof a deep learning CNN, including multi-dimensional convolution, activation, and poolinglayers, completely in the probabilistic computing domain. The proposed architecture notonly achieves the advantages of stochastic-based computation, but can also solve severalchallenges in conventional CNN, such as complexity, parallelism, and memory storage.Overall, being highly scalable and energy efficient, the proposed PDT-based architecture iswell-suited for a modular vision engine with the goal of performing real-time detection, recognitionand segmentation of mega-pixel images, especially those perception-based computingtasks that are inherently fault-tolerant.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006828, ucf:51768
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006828
-
-
Title
-
Approximated Control Affine Dynamics Mode For an Agricultural Field Robot Considering Wheel Terrain Interaction.
-
Creator
-
Menendez-Aponte, Pablo, Xu, Yunjun, Lin, Kuo-Chi, Moslehy, Faissal, University of Central Florida
-
Abstract / Description
-
As populations and the demand for higher crop yields grow, so to does the need forefficient agricultural wheeled mobile robots. To achieve precise navigation through a fieldit is desirable that the control system is designed based on an accurate dynamic model. Inthis paper a control affine model for a custom designed skid-steer differential drive wheeledmobile robot is found. The Terramechanic wheel terrain interaction is adopted and modifiedto consider wheels with a torus geometry. Varying...
Show moreAs populations and the demand for higher crop yields grow, so to does the need forefficient agricultural wheeled mobile robots. To achieve precise navigation through a fieldit is desirable that the control system is designed based on an accurate dynamic model. Inthis paper a control affine model for a custom designed skid-steer differential drive wheeledmobile robot is found. The Terramechanic wheel terrain interaction is adopted and modifiedto consider wheels with a torus geometry. Varying slip ratios and slip angles are consideredin the terrain reaction forces, which is curve-fitted using a nonlinear least squares approachsuch that the achieved model is control affine. The parameters in the proposed model isidentified through an extended Kalman filter so that the state variables in the model arematched. Both simulation and experiments in a commercial farm validated the proposedmodel and the identification approach.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006480, ucf:51410
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006480
-
-
Title
-
Geolocation of Diseased Leaves in Strawberry Orchards for a Custom-Designed Octorotor.
-
Creator
-
Garcia, Christian, Xu, Yunjun, Lin, Kuo-Chi, Kauffman, Jeffrey, University of Central Florida
-
Abstract / Description
-
In recent years, technological advances have shown a strive for more automated processes in agriculture, as seem with the use of unmanned aerial vehicles (UAVs) with onboard sensors in many applications, including disease detection and yield prediction. In this thesis, an octorotor UAV is presented that was designed, built, and flight tested, with features that are custom-designed for strawberry orchard disease detection. To further automate the disease scouting operation, geolocation, or the...
Show moreIn recent years, technological advances have shown a strive for more automated processes in agriculture, as seem with the use of unmanned aerial vehicles (UAVs) with onboard sensors in many applications, including disease detection and yield prediction. In this thesis, an octorotor UAV is presented that was designed, built, and flight tested, with features that are custom-designed for strawberry orchard disease detection. To further automate the disease scouting operation, geolocation, or the process of determining global position coordinates of identified diseased regions based on images taken, is investigated. A Kalman filter is designed, based on a linear measurement model derived from an orthographic projection method, to estimate the target position. Simulation, as well as an ad-hoc experiment using flight data, is performed to compare this filter to the extended Kalman filter (EKF), which is based on the commonly used perspective projection method. The filter is embedded onto a CPU board for real-time use aboard the octorotor UAV, and the algorithm structure for this process is presented. In the later part of the thesis, a probabilistic data association method is used, jointly with a proposed logic-based measurement-to-target correlation method, to analyze measurements of different target sources and is incorporated into the Kalman filter. A simulation and an ad-hoc experiment, using video and flight data acquired aboard the octorotor UAV with a gimballed camera in hover flight, are performed to demonstrate the effectiveness of the algorithm and UAV platform.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006305, ucf:51597
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006305
-
-
Title
-
Integrated Microwave Resonator/Antenna Structures for Sensor and Filter Applications.
-
Creator
-
Cheng, Haitao, Gong, Xun, Wahid, Parveen, Wu, Thomas, Kapoor, Vikram, An, Linan, University of Central Florida
-
Abstract / Description
-
This dissertation presents design challenges and promising solutions for temperature and pressure sensors which are highly desirable for harsh-environment applications, such as turbine engines. To survive the harsh environment consisting of high temperatures above 1000oC, high pressures around 300 psi, and corrosive gases, the sensors are required to be robust both electrically and mechanically. In addition, wire connection of the sensors is a challenging packaging problem, which remains...
Show moreThis dissertation presents design challenges and promising solutions for temperature and pressure sensors which are highly desirable for harsh-environment applications, such as turbine engines. To survive the harsh environment consisting of high temperatures above 1000oC, high pressures around 300 psi, and corrosive gases, the sensors are required to be robust both electrically and mechanically. In addition, wire connection of the sensors is a challenging packaging problem, which remains unresolved as of today. In this dissertation, robust ceramic sensors are demonstrated for both high temperature and pressure measurements. Also, the wireless sensors are achieved based on microwave resonators.Two types of temperature sensors are realized using integrated resonator/antennas and reflective patches, respectively. Both types of the sensors utilize alumina substrate which has a temperature-dependent dielectric constant. The temperature in the harsh environment is wirelessly detected by measuring the resonant frequency of the microwave resonator, which is dependent on the substrate permittivity. The integrated resonator/antenna structure minimizes the sensor dimension by adopting a seamless design between the resonator sensor and antenna. This integration technique can be also used to achieve an antenna array integrated with cavity filters. Alternatively, the aforementioned reflective patch sensor works simultaneously as a resonator sensor and a radiation element. Due to its planar structure, the reflective patch sensor is easy for design and fabrication. Both temperature sensors are measured above 1000oC.A pressure sensor is also demonstrated for high-temperature applications. Pressure is detected via the change in resonant frequency of an evanescent-mode resonator which corresponds to cavity deformation under gas pressure. A compact sensor size is achieved with a post loading the cavity resonator and a low-profile antenna connecting to the sensor. Polymer-Derived-Ceramic (PDC) is developed and used for the sensor fabrication. The pressure sensor is characterized under various pressures at high temperatures up to 800oC. In addition, to facilitate sensor characterizations, a robust antenna is developed in order to wirelessly interrogate the sensors. This specially-developed antenna is able to survive a record-setting temperature of 1300oC.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005473, ucf:50335
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005473
-
-
Title
-
Let's take a selfie! Living in a Snapchat beauty filtered world:The impact it has on women's beauty perceptions.
-
Creator
-
Cruz, Angelina, Hastings, Sally, Hanlon, Christine, Kinnally, William, University of Central Florida
-
Abstract / Description
-
Snapchat's beauty filters have become a prominent force in the social media realm. It's vital in understanding the impact in how Snapchat's beauty filters shape beauty standards among young women. This became the primary motivation of conducting this qualitative study. Six focus groups were conducted to explore the depths of why female college students between the ages of 18-25 decide to post either selfies with Snapchat's beauty filters applied or natural images. Dialectical tensions theory...
Show moreSnapchat's beauty filters have become a prominent force in the social media realm. It's vital in understanding the impact in how Snapchat's beauty filters shape beauty standards among young women. This became the primary motivation of conducting this qualitative study. Six focus groups were conducted to explore the depths of why female college students between the ages of 18-25 decide to post either selfies with Snapchat's beauty filters applied or natural images. Dialectical tensions theory was used as the foundation for this study to explore both the internal and external discursive struggles young women face when deciding to post natural or filtered selfies on their social media accounts. Integrating impression management, self-objectification, and self-esteem as components of understanding this phenomenon and using a thematic analysis to uncover prevalent and reoccurring themes discussed in the focus groups yielded remarkable results. Themes of perceptions of attractiveness, presenting a fa(&)#231;ade, and the power of self-esteem highlighted possible reasons why women were attracted in utilizing Snapchat's beauty filters or posting natural images. Findings also showed how the internal struggles between perfectionism-reality and external struggles of fitting in-standing out from the crowd became tensions women were often plagued in decision making to post natural or filtered images. This study serves as an epitome for beauty standards imposed in social media especially in HVSM (highly visual social media) sites like Snapchat and Instagram. There's limited research on Snapchat filters and the implications it has on females' overall perceptions of themselves of whether to implement filters within their photos. Understanding the reasons why women feel the need to use beauty filters or post natural selfies through a discussion-based setting embarked discoveries of how the media and society should integrate new sets of beauty standards.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007619, ucf:52519
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007619
-
-
Title
-
SIGNAL PROCESSING OF AN ECG SIGNALIN THE PRESENCE OF A STRONG STATIC MAGNETIC FIELD.
-
Creator
-
Gupta, Aditya, Weeks, Arthur, University of Central Florida
-
Abstract / Description
-
This dissertation addresses the problem of elevation of the T wave of an electrocardiogram (ECG) signal in the magnetic resonance imaging (MRI). In the MRI, due to the strong static magnetic field the interaction of the blood flow with this strong magnetic field induces a voltage in the body. This voltage appears as a superimposition at the locus of the T wave of the ECG signal. This looses important information required by the doctors to interpret the ST segment of the ECG and detect...
Show moreThis dissertation addresses the problem of elevation of the T wave of an electrocardiogram (ECG) signal in the magnetic resonance imaging (MRI). In the MRI, due to the strong static magnetic field the interaction of the blood flow with this strong magnetic field induces a voltage in the body. This voltage appears as a superimposition at the locus of the T wave of the ECG signal. This looses important information required by the doctors to interpret the ST segment of the ECG and detect diseases such as myocardial infarction. This dissertation aims at finding a solution to the problem of elevation of the T wave of an ECG signal in the MRI. The first step is to simulate the entire situation and obtain the magnetic field dependent T wave elevation. This is achieved by building a model of the aorta and simulating the blood flow in it. This model is then subjected to a static magnetic field and the surface potential on the thorax is measured to observe the T wave elevation. The various parameters on which the T wave elevation is dependent are then analyzed. Different approaches are used to reduce this T wave elevation problem. The direct approach aims at computing the magnitude of T wave elevation using magneto-hydro-dynamic equations. The indirect approach uses digital signal processing tools like the least mean square adaptive filter to remove the T wave elevation and obtain artifact free ECG signal in the MRI. Excellent results are obtained from the simulation model. The model perfectly simulates the ECG signal in the MRI at all the 12 leads of the ECG. These results are compared with ECG signals measured in the MRI. A simulation package is developed in MATLAB based on the simulation model. This package is a graphical user interface allowing the user to change the strength of magnetic field, the radius of the aorta and the orientation of the aorta with respect to the heart and observe the ECG signals with the elevation at the 12 leads of the ECG. Also the artifacts introduced due to the magnetic field can be removed by the least mean square adaptive filter. The filter adapts the ECG signal in the MRI to the ECG signal of the patient outside the MRI. Before the adaptation, the heart rate of the ECG outside the MRI is matched to the ECG in the MRI by interpolation or decimation. The adaptive filter works excellently to remove the T wave artifacts. When the cardiac output of the patient changes, the simulation model is used along with the adaptive filter to obtain the artifact free ECG signal.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001857, ucf:47389
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001857
-
-
Title
-
DESIGN OF POLYNOMIAL-BASED FILTERS FOR CONTINUOUSLY VARIABLE SAMPLE RATE CONVERSION WITH APPLICATIONS IN SYNTHETIC INSTRUMENTATION AND SOFTWARE DEFINED RADIO.
-
Creator
-
Hunter, Matthew, Mikhael, Wasfy, University of Central Florida
-
Abstract / Description
-
In this work, the design and application of Polynomial-Based Filters (PBF) for continuously variable Sample Rate Conversion (SRC) is studied. The major contributions of this work are summarized as follows. First, an explicit formula for the Fourier Transform of both a symmetrical and nonsymmetrical PBF impulse response with variable basis function coefficients is derived. In the literature only one explicit formula is given, and that for a symmetrical even length filter with fixed basis...
Show moreIn this work, the design and application of Polynomial-Based Filters (PBF) for continuously variable Sample Rate Conversion (SRC) is studied. The major contributions of this work are summarized as follows. First, an explicit formula for the Fourier Transform of both a symmetrical and nonsymmetrical PBF impulse response with variable basis function coefficients is derived. In the literature only one explicit formula is given, and that for a symmetrical even length filter with fixed basis function coefficients. The frequency domain optimization of PBFs via linear programming has been proposed in the literature, however, the algorithm was not detailed nor were explicit formulas derived. In this contribution, a minimax optimization procedure is derived for the frequency domain optimization of a PBF with time-domain constraints. Explicit formulas are given for direct input to a linear programming routine. Additionally, accompanying Matlab code implementing this optimization in terms of the derived formulas is given in the appendix. In the literature, it has been pointed out that the frequency response of the Continuous-Time (CT) filter decays as frequency goes to infinity. It has also been observed that when implemented in SRC, the CT filter is sampled resulting in CT frequency response aliasing. Thus, for example, the stopband sidelobes of the Discrete-Time (DT) implementation rise above the CT designed level. Building on these observations, it is shown how the rolloff rate of the frequency response of a PBF can be adjusted by adding continuous derivatives to the impulse response. This is of great advantage, especially when the PBF is used for decimation as the aliasing band attenuation can be made to increase with frequency. It is shown how this technique can be used to dramatically reduce the effect of alias build up in the passband. In addition, it is shown that as the number of continuous derivatives of the PBF increases the resulting DT implementation more closely matches the Continuous-Time (CT) design. When implemented for SRC, samples from a PBF impulse response are computed by evaluating the polynomials using a so-called fractional interval, µ. In the literature, the effect of quantizing µ on the frequency response of the PBF has been studied. Formulas have been derived to determine the number of bits required to keep frequency response distortion below prescribed bounds. Elsewhere, a formula has been given to compute the number of bits required to represent µ to obtain a given SRC accuracy for rational factor SRC. In this contribution, it is shown how these two apparently competing requirements are quite independent. In fact, it is shown that the wordlength required for SRC accuracy need only be kept in the µ generator which is a single accumulator. The output of the µ generator may then be truncated prior to polynomial evaluation. This results in significant computational savings, as polynomial evaluation can require several multiplications and additions. Under the heading of applications, a new Wideband Digital Downconverter (WDDC) for Synthetic Instruments (SI) is introduced. DDCs first tune to a signal's center frequency using a numerically controlled oscillator and mixer, and then zoom-in to the bandwidth of interest using SRC. The SRC is required to produce continuously variable output sample rates from a fixed input sample rate over a large range. Current implementations accomplish this using a pre-filter, an arbitrary factor resampler, and integer decimation filters. In this contribution, the SRC of the WDDC is simplified reducing the computational requirements to a factor of three or more. In addition to this, it is shown how this system can be used to develop a novel computationally efficient FFT-based spectrum analyzer with continuously variable frequency spans. Finally, after giving the theoretical foundation, a real Field Programmable Gate Array (FPGA) implementation of a novel Arbitrary Waveform Generator (AWG) is presented. The new approach uses a fixed Digital-to-Analog Converter (DAC) sample clock in combination with an arbitrary factor interpolator. Waveforms created at any sample rate are interpolated to the fixed DAC sample rate in real-time. As a result, the additional lower performance analog hardware required in current approaches, namely, multiple reconstruction filters and/or additional sample clocks, is avoided. Measured results are given confirming the performance of the system predicted by the theoretical design and simulation.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002292, ucf:47844
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002292
-
-
Title
-
State (Hydrodynamics) Identification in the Lower St. Johns River using the Ensemble Kalman filter.
-
Creator
-
Tamura, Hitoshi, Hagen, Scott, Wang, Dingbao, Bacopoulos, Peter, University of Central Florida
-
Abstract / Description
-
This thesis presents a method, Ensemble Kalman Filter (EnKF), applied to a high-resolution, shallow water equations model (DG ADCIRC-2DDI) of the Lower St. Johns River with observation data at four gauging stations. EnKF, a sequential data assimilation method for non-linear problems, is developed for tidal flow simulation for estimation of state variables, i.e., water levels and depth-integrated currents for overland unstructured finite element meshes. The shallow water equations model is...
Show moreThis thesis presents a method, Ensemble Kalman Filter (EnKF), applied to a high-resolution, shallow water equations model (DG ADCIRC-2DDI) of the Lower St. Johns River with observation data at four gauging stations. EnKF, a sequential data assimilation method for non-linear problems, is developed for tidal flow simulation for estimation of state variables, i.e., water levels and depth-integrated currents for overland unstructured finite element meshes. The shallow water equations model is combined with observation data, which provides the basis of the EnKF applications. In this thesis, EnKF is incorporated into DG ADCIRC-2DDI code to estimate the state variables.Upon its development, DG ADCIRC-2DDI with EnKF is first validated by implementing to a low-resolution, shallow water equations model of a quarter annular harbor with synthetic observation data at six gauging stations. Second, DG ADCIRC-2DDI with EnKF is implemented to a high-resolution, shallow water equations model of the Lower St. Johns River with real observation data at four gauging stations. Third, four different experiments are performed by applying DG ADCIRC-2DDI with EnKF to the Lower St. Johns River.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004331, ucf:49455
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004331
-
-
Title
-
Investigating Novel Water Treatment Methods and Monitoring Techniques for Sulfide-Laden Groundwater Supplies.
-
Creator
-
Yoakum, Benjamin, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, Moore, Sean, University of Central Florida
-
Abstract / Description
-
This dissertation reports on research related to novel water treatment and monitoring techniques for sulfide-laden groundwater supplies. The dissertation is divided into several chapters with four core chapters focused on investigations studying a novel water treatment method or monitoring technique. The first investigation assessed the efficacy of multi-pass spray aeration treatment to remove trihalomethanes (THMs) and to reduce the total THM formation potential (TTHMFP) of an aerated water...
Show moreThis dissertation reports on research related to novel water treatment and monitoring techniques for sulfide-laden groundwater supplies. The dissertation is divided into several chapters with four core chapters focused on investigations studying a novel water treatment method or monitoring technique. The first investigation assessed the efficacy of multi-pass spray aeration treatment to remove trihalomethanes (THMs) and to reduce the total THM formation potential (TTHMFP) of an aerated water column post-aeration. A recirculating spray aeration pilot unit was constructed to make this assessment. To assess the effect of multi-pass spray aeration on the TTHMFP, water was recirculated through a fabricated spray nozzle for various lengths of time. Results showed that multi-pass spray aeration can remove chloroform, dichlorobromomethane, dibromochloromethane and bromoform to below detection levels ((<) 0.7 ppb) for the waters investigated. Additionally, spray aeration reduced the TTHMFP of chlorinated water. Results suggest multi-pass spray aeration may be a viable treatment option for some bromide container waters. Results also indicate that multi-pass spray aeration removes bromide from the bulk water in the form of organically bound volatile compounds.The second investigation assessed the efficacy of using pre-existing tray aeration infrastructure to comply with disinfection by-product (DBP) regulations. To assess the efficacy of tray aerators to reduce the concentration TTHMs a pilot tray aerator was constructed. Results showed that after five tray passes (each pass consisting of water being passed over five trays) the concentration of TTHMs was below the detection limit ((<) 0.7 ppb) for the water investigated. To assess the efficacy of tray aeration at full-scale, a water treatment plant and the distribution system it serves were monitored for eight months. Results showed an approximate 40 ppb reduction in the TTHM concentration at two on-site monitoring locations and the one off-site monitoring location (initial concentrations being approximately 54 ppb, 60 ppb and 73 ppb, respectively). Results suggest that the utility managing the full-scale system could comply with DBP regulations by using the pre-existing tray aeration infrastructure to reduce formed THMs on-site where regulated haloacetic acids are not predominant.The third investigation assessed the efficacy of using biological activated carbon (BAC) to remove disinfection by-product precursor matter to comply with DBP regulations. To research this method, a pilot scale BAC filter was operated for three independent test runs. In addition, two full-scale WTPs using BAC were monitored over time. Results showed an approximate 40 percent removal of dissolved organic carbon (DOC) during the three pilot runs and an approximate 55 percent removal of DOC during full-scale monitoring. Results showed that the reduction in DOC reduced the TTHMFP of BAC treated water. Results suggest that BAC treatment could be a viable treatment option to comply with DBP regulations in the sulfide-laden water studied.The fourth investigation assessed the suitability of oxidation reduction potential (ORP) to monitor the effectiveness of an oxidizing media filter used to remove sulfur from a sulfide-laden groundwater. Results showed that ORP was more useful as a measurement technique as compared to free chlorine residual when assessing filter bed health and regeneration effectiveness. It was determined that when the ORP measurement taken from within the oxidative media layer was below 500 mV, the filter bed was not providing treatment, and manganese could be released. Results showed a significant increase in turbidity ((>) 2 NTU) and total manganese ((>) 0.05 mg/L) occurred when the ORP within the filter bed dropped below 400 mV. More frequent cycling of the filters was found to be an effective treatment option to maintain ORP values above an identified 400 mV operational threshold.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0007141, ucf:52317
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007141
-
-
Title
-
DESIGN AND OPERATION OF STATIONARY DISTRIBUTED BATTERY MICRO-STORAGE SYSTEMS.
-
Creator
-
Al-Haj Hussein, Ala, Batarseh, Issa, University of Central Florida
-
Abstract / Description
-
Due to some technical and environmental constraints, expanding the current electric power generation and transmission system is being challenged by even increasing the deployment of distributed renewable generation and storage systems. Energy storage can be used to store energy from utility during low-demand (off-peak) hours and deliver this energy back to the utility during high-demand (on-peak) hours. Furthermore, energy storage can be used with renewable sources to overcome some of their...
Show moreDue to some technical and environmental constraints, expanding the current electric power generation and transmission system is being challenged by even increasing the deployment of distributed renewable generation and storage systems. Energy storage can be used to store energy from utility during low-demand (off-peak) hours and deliver this energy back to the utility during high-demand (on-peak) hours. Furthermore, energy storage can be used with renewable sources to overcome some of their limitations such as their strong dependence on the weather conditions, which cannot be perfectly predicted, and their unmatched or out-of-synchronization generation peaks with the demand peaks. Generally, energy storage enhances the performance of distributed renewable sources and increases the efficiency of the entire power system. Moreover, energy storage allows for leveling the load, shaving peak demands, and furthermore, transacting power with the utility grid. This research proposes an energy management system (EMS) to manage the operation of distributed grid-tied battery micro-storage systems for stationary applications when operated with and without renewable sources. The term "micro" refers to the capacity of the energy storage compared to the grid capacity. The proposed management system employs four dynamic models; economic model, battery model, and load and weather forecasting models. These models, which are the main contribution of this research, are used in order to optimally control the operation of the micro-storage system (MSS) to maximize the economic return for the end-user when operated in an electricity spot market system.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003964, ucf:48712
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003964
-
-
Title
-
Effluent Water Quality Improvement Using Silt Fences and Stormwater Harvesting.
-
Creator
-
Gogo-Abite, Ikiensinma, Chopra, Manoj, Wanielista, Martin, Nam, Boo Hyun, Weishampel, John, University of Central Florida
-
Abstract / Description
-
Construction sites are among the most common areas to experience soil erosion and sediment transport due to the mandatory foundation tasks such as excavation and land grubbing. Thus, temporary sediment barriers are installed along the perimeter to prevent sediment transport from the site. Erosion and sediment transport control measures may include, but not limited to, physical and chemical processes such as the use of a silt fence and polyacrylamide product. Runoff from construction sites and...
Show moreConstruction sites are among the most common areas to experience soil erosion and sediment transport due to the mandatory foundation tasks such as excavation and land grubbing. Thus, temporary sediment barriers are installed along the perimeter to prevent sediment transport from the site. Erosion and sediment transport control measures may include, but not limited to, physical and chemical processes such as the use of a silt fence and polyacrylamide product. Runoff from construction sites and other impervious surfaces are routinely discharged into ponds for treatment before being released into a receiving water body. Stormwater harvesting from a pond for irrigation of adjacent lands is promoted as one approach to reducing pond discharge while supplementing valuable potable water used for irrigation. The reduction of pond discharge reduces the mass of pollutants in the discharge. In the dissertation, presented is the investigation of the effectiveness of temporary sediment barriers and then, development of a modeling approach to a stormwater harvesting pond to provide a comprehensive stormwater management pollution reduction assessment tool.The first part of the research presents the investigation of the performance efficiencies of silt fence fabrics in turbidity and sediment concentration removal, and the determination of flow-through-rate on simulated construction sites in real time. Two silt fence fabrics, (1) woven and the other (2) nonwoven were subjected to material index property tests and a series of field-scale tests with different rainfall intensities and events for different embankment slopes on a tilting test-bed. Collected influent and effluent samples were analyzed for sediment concentration and turbidity, and the flow-through-rate for each fabric was evaluated. Test results revealed that the woven and nonwoven silt fence achieved 11 and 56 percent average turbidity reduction efficiency, respectively. Each fabric also achieved 20 and 56 percent average sediment concentration removal efficiency, respectively. Fabric flow-through-rates were functions of the rainfall intensity and embankment slope. The nonwoven fabric exhibited higher flow-through-rates than the woven fabric in both field-scale and laboratory tests.In the second part of the study, a Stormwater Harvesting and Assessment for Reduction of Pollution (SHARP) model was developed to predict operation of wet pond used for stormwater harvesting. The model integrates the interaction of surface water and groundwater in a catchment area. The SHARP model was calibrated and validated with actual pond water elevation data from a stormwater pond at Miramar Lakes, Miramar, Florida. Model evaluation showed adequate prediction of pond water elevation with root mean square error between 0.07 and 0.12 m; mean absolute error was between 0.018 and 0.07 m; and relative index of agreement was between 0.74 and 0.98 for both calibration and validation periods. The SHARP model is capable of assessing harvesting safe-yield and discharge from a pond, including the prediction of the percentage of runoff into a harvesting pond that is not discharged.The combination of silt fence and/or polyacrylamide PAM before stormwater harvesting pond in a treatment train for the reduction of pollutants from construction sites has the potential of significantly exceeding a performance standard of 85 percent reduction typically required by local authorities. In fact, the stringent requirement of equaling pre- and post-development pollutant loading is highly achievable by the treatment train approach. The significant contribution from the integration of the SHARP model to the treatment train is that real-time assessment of pollutant loading reduction by volume can be planned and controlled to achieve target performance standards.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004539, ucf:49244
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004539
Pages