Current Search: filter (x)
Pages
-
-
Title
-
Lattice-Valued T-Filters and Induced Structures.
-
Creator
-
Reid, Frederick, Richardson, Gary, Brennan, Joseph, Han, Deguang, Lang, Sheau-Dong, University of Central Florida
-
Abstract / Description
-
A complete lattice is called a frame provided meets distribute over arbitrary joins. The implication operation in this context plays a central role. Intuitively, it measures the degree to which one element is less than or equal to another. In this setting, a category is defined by equipping each set with a T-convergence structure which is defined in terms of T-filters. This category is shown to be topological, strongly Cartesian closed, and extensional. It is well known that the category of...
Show moreA complete lattice is called a frame provided meets distribute over arbitrary joins. The implication operation in this context plays a central role. Intuitively, it measures the degree to which one element is less than or equal to another. In this setting, a category is defined by equipping each set with a T-convergence structure which is defined in terms of T-filters. This category is shown to be topological, strongly Cartesian closed, and extensional. It is well known that the category of topological spaces and continuous maps is neither Cartesian closed nor extensional.Subcategories of compact and of complete spaces are investigated. It is shown that each T-convergence space has a compactification with the extension property provided the frame is a Boolean algebra. T-Cauchy spaces are defined and sufficient conditions for the existence of a completion are given. T-uniform limit spaces are also defined and their completions are given in terms of the T-Cauchy spaces they induce. Categorical properties of these subcategories are also investigated. Further, for a fixed T-convergence space, under suitable conditions, it is shown that there exists an order preserving bijection between the set of all strict, regular, Hausdorff compactifications and the set of all totally bounded T-Cauchy spaces which induce the fixed space.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007520, ucf:52586
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007520
-
-
Title
-
Ultra-wideband Spread Spectrum Communications using Software Defined Radio and Surface Acoustic Wave Correlators.
-
Creator
-
Gallagher, Daniel, Malocha, Donald, Delfyett, Peter, Richie, Samuel, Weeks, Arthur, Youngquist, Robert, University of Central Florida
-
Abstract / Description
-
Ultra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator...
Show moreUltra-wideband (UWB) communication technology offers inherent advantages such as the ability to coexist with previously allocated Federal Communications Commission (FCC) frequencies, simple transceiver architecture, and high performance in noisy environments. Spread spectrum techniques offer additional improvements beyond the conventional pulse-based UWB communications. This dissertation implements a multiple-access UWB communication system using a surface acoustic wave (SAW) correlator receiver with orthogonal frequency coding and software defined radio (SDR) base station transmitter.Orthogonal frequency coding (OFC) and pseudorandom noise (PN) coding provide a means for spreading of the UWB data. The use of orthogonal frequency coding (OFC) increases the correlator processing gain (PG) beyond that of code division multiple access (CDMA); providing added code diversity, improved pulse ambiguity, and superior performance in noisy environments. Use of SAW correlators reduces the complexity and power requirements of the receiver architecture by eliminating many of the components needed and reducing the signal processing and timing requirements necessary for digital matched filtering of the complex spreading signal.The OFC receiver correlator code sequence is hard-coded in the device due to the physical SAW implementation. The use of modern SDR forms a dynamic base station architecture which is able to programmatically generate a digitally modulated transmit signal. An embedded Xilinx Zynq (TM) system on chip (SoC) technology was used to implement the SDR system; taking advantage of recent advances in digital-to-analog converter (DAC) sampling rates. SDR waveform samples are generated in baseband in-phase and quadrature (I (&) Q) pairs and upconverted to a 491.52 MHz operational frequency.The development of the OFC SAW correlator ultimately used in the receiver is presented along with a variety of advanced SAW correlator device embodiments. Each SAW correlator device was fabricated on lithium niobate (LiNbO3) with fractional bandwidths in excess of 20%. The SAW correlator device presented for use in system was implemented with a center frequency of 491.52 MHz; matching SDR transmit frequency. Parasitic electromagnetic feedthrough becomes problematic in the packaged SAW correlator after packaging and fixturing due to the wide bandwidths and high operational frequency. The techniques for reduction of parasitic feedthrough are discussedwith before and after results showing approximately 10:1 improvement.Correlation and demodulation results are presented using the SAW correlator receiver under operation in an UWB communication system. Bipolar phase shift keying (BPSK) techniques demonstrate OFC modulation and demodulation for a test binary bit sequence. Matched OFC code reception is compared to a mismatched, or cross-correlated, sequence after correlation and demodulation. Finally, the signal-to-noise power ratio (SNR) performance results for the SAW correlator under corruption of a wideband noise source are presented.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005794, ucf:50054
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005794
-
-
Title
-
An Assessment of Biosorption Activated Media for the Removal of Pollutants in Up-Flow Stormwater Treatment Systems.
-
Creator
-
Hood, Andrew, Randall, Andrew, Wanielista, Martin, Chopra, Manoj, O'Reilly, Andrew, Moore, Sean, University of Central Florida
-
Abstract / Description
-
Nitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical...
Show moreNitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical in ultra-urban environments where above ground space is limited. Upflow filters utilizing biosorption activated media (BAM) that can be placed underground offer a small footprint alternative. Additionally, BAM upflow filters can be installed at the discharge point of traditional stormwater ponds to provide further treatment. This research simulated stormwater that had already been treated for solids removal; thus, most of the nutrients and solids in the influent were assumed to be as non-settable suspended solids or dissolved solids. Three different BAM mixtures in an upflow filter configuration were compared for the parameters of nitrogen, phosphorus, total coliform, E. coli, and heterotrophic plate count (HPC). Additionally, genetic testing was conducted using Polymerase Chain Reaction (PCR), in conjunction with a nitrogen mass balance, to determine if Anammox was a significant player in the nitrogen removal. The columns were run at both 22-minute and 220-minute Empty Bed Contact Times (EBCTs). All the BAM mixtures analyzed were shown to be capable at the removal of nitrogen, phosphorus, and total coliform during both the 22-minute and 220-minute EBCTs, with BAM #1 having the highest removal performance for all three parameters during both EBCTs. All BAM mixtures experienced an increase in HPC. Additionally, PCR analysis confirmed the presence of Anammox in the biofilm and via mass balance it was determined that the biological nitrogen removal was due to Anammox and endogenous denitrification with Anammox being a significant mechanism.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007817, ucf:52875
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007817
-
-
Title
-
The Identification and Segmentation of Astrocytoma Prior to Critical Mass, by means of a Volumetric/Subregion Regression Analysis of Normal and Neoplastic Brain Tissue.
-
Creator
-
Higgins, Lyn, Hughes, Charles, Morrow, Patricia Bockelman, Bagci, Ulas, Lisle, Curtis, University of Central Florida
-
Abstract / Description
-
As the underlying cause of Glioblastoma Multiforme (GBM) is presently unclear, this research implements a new approach to identifying and segmenting plausible instances of GBM prior to critical mass. Grade-IV Astrocytoma, or GBM, is an aggressive and malignant cancer arising from star-shaped glial cells, or astrocytes, where the astrocytes, functionally, assist in the support and protection of neurons within the central nervous system and spinal cord. Subsequently, our motivation for...
Show moreAs the underlying cause of Glioblastoma Multiforme (GBM) is presently unclear, this research implements a new approach to identifying and segmenting plausible instances of GBM prior to critical mass. Grade-IV Astrocytoma, or GBM, is an aggressive and malignant cancer arising from star-shaped glial cells, or astrocytes, where the astrocytes, functionally, assist in the support and protection of neurons within the central nervous system and spinal cord. Subsequently, our motivation for researching the ability to recognize GBM is that the underlying cause of the mutation is presently unclear, leading to the operative that GBM is only detectable through a combination of MRI and CT brain scans, cooperatively, along with a resection biopsy. Since astrocytoma only becomes evident at critical mass, when the cellular structure of the neoplasm becomes visible within the image, this research seeks to achieve earlier identification and segmentation of the neoplasm by evaluating the malignant area via a volumetric voxel approach to removing noise artifacts and analyzing voxel differentials. In order to investigate neoplasm continuity, a differential approach has been implemented utilizing a multi-polynomial/multi-domain regression algorithm, thus, ultimately, providing a graphical and mathematical analysis of the differentials within critical mass and non-critical mass images. Given these augmentations to MRI and CT image rectifications, we theorize that our approach will improve on astrocytoma recognition and segmentation, along with achieving greater accuracy in diagnostic evaluations of the malignant area.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007336, ucf:52111
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007336
-
-
Title
-
LIQUID CRYSTAL OPTICS FOR COMMUNICATIONS, SIGNAL PROCESSING AND 3-D MICROSCOPIC IMAGING.
-
Creator
-
Khan, Sajjad, Riza, Nabeel, University of Central Florida
-
Abstract / Description
-
This dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of...
Show moreThis dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of the applications demonstrated in this thesis are LC devices that are non-pixelated and can be controlled either electrically or optically. Instead of the typical pixel-by-pixel control as is custom in LC devices, the phase profile across the aperture of these novel LC devices is varied through the use of high impedance layers. Due to the presence of the high impedance layer, there forms a voltage gradient across the aperture of such a device which results in a phase gradient across the LC layer which in turn is accumulated by the optical beam traversing through this LC device. The geometry of the electrical contacts that are used to apply the external voltage will define the nature of the phase gradient present across the optical beam. In order to steer a laser beam in one angular dimension, straight line electrical contacts are used to form a one dimensional phase gradient while an annular electrical contact results in a circularly symmetric phase profile across the optical beam making it suitable for focusing the optical beam. The geometry of the electrical contacts alone is not sufficient to form the linear and the quadratic phase profiles that are required to either deflect or focus an optical beam. Clever use of the phase response of a typical nematic liquid crystal (NLC) is made such that the linear response region is used for the angular beam deflection while the high voltage quadratic response region is used for focusing the beam. Employing an NLC deflector, a device that uses the linear angular deflection, laser beam steering is demonstrated in two orthogonal dimensions whereas an NLC lens is used to address the third dimension to complete a three dimensional (3-D) scanner. Such an NLC deflector was then used in a variable optical attenuator (VOA), whereby a laser beam coupled between two identical single mode fibers (SMF) was mis-aligned away from the output fiber causing the intensity of the output coupled light to decrease as a function of the angular deflection. Since the angular deflection is electrically controlled, hence the VOA operation is fairly simple and repeatable. An extension of this VOA for wavelength tunable operation is also shown in this dissertation. A LC spatial light modulator (SLM) that uses a photo-sensitive high impedance electrode whose impedance can be varied by controlling the light intensity incident on it, is used in a control system for a phased array antenna. Phase is controlled on the Write side of the SLM by controlling the intensity of the Write laser beam which then is accessed by the Read beam from the opposite side of this reflective SLM. Thus the phase of the Read beam is varied by controlling the intensity of the Write beam. A variable fiber-optic delay line is demonstrated in the thesis which uses wavelength sensitive and wavelength insensitive optics to get both analog as well as digital delays. It uses a chirped fiber Bragg grating (FBG), and a 1xN optical switch to achieve multiple time delays. The switch can be implemented using the 3-D optical scanner mentioned earlier. A technique is presented for ultra-low loss laser communication that uses a combination of strong and weak thin lens optics. As opposed to conventional laser communication systems, the Gaussian laser beam is prevented from diverging at the receiving station by using a weak thin lens that places the transmitted beam waist mid-way between a symmetrical transmitter-receiver link design thus saving prime optical power. LC device technology forms an excellent basis to realize such a large aperture weak lens. Using a 1-D array of LC deflectors, a broadband optical add-drop filter (OADF) is proposed for dense wavelength division multiplexing (DWDM) applications. By binary control of the drive signal to the individual LC deflectors in the array, any optical channel can be selectively dropped and added. For demonstration purposes, microelectromechanical systems (MEMS) digital micromirrors have been used to implement the OADF. Several key systems issues such as insertion loss, polarization dependent loss, wavelength resolution and response time are analyzed in detail for comparison with the LC deflector approach. A no-moving-parts axial scanning confocal microscope (ASCM) system is designed and demonstrated using a combination of a large diameter LC lens and a classical microscope objective lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is moved continuously over a 48 Ým range with measured 3-dB axial resolution of 3.1 Ým using a 0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used to image an Indium Phosphide twin square optical waveguide sample with a 10.2 Ým waveguide pitch and 2.3 Ým height and width. Using fine analog electrical control of the LC lens, a super-fine sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful in various precision three dimensional imaging and profiling applications.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000750, ucf:46596
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000750
Pages