Current Search: heat transfer (x)
View All Items
Pages
- Title
- WALL HEAT TRANSFER EFFECTS IN THE ENDWALL REGION BEHIND A REFLECTED SHOCK WAVE AT LONG TEST TIMES.
- Creator
-
Frazier, Corey, Petersen, Eric, University of Central Florida
- Abstract / Description
-
Shock-tube experiments are typically performed at high temperatures (>1200K) due to test-time constraints. These test times are usually ~1 ms in duration and the source of this short, test-time constraint is loss of temperature due to heat transfer. At short test times, there is very little appreciable heat transfer between the hot gas and the cold walls of the shock tube and a high test temperature can be maintained. However, some experiments are using lower temperatures (approx. 800K) to...
Show moreShock-tube experiments are typically performed at high temperatures (>1200K) due to test-time constraints. These test times are usually ~1 ms in duration and the source of this short, test-time constraint is loss of temperature due to heat transfer. At short test times, there is very little appreciable heat transfer between the hot gas and the cold walls of the shock tube and a high test temperature can be maintained. However, some experiments are using lower temperatures (approx. 800K) to achieve ignition and require much longer test times (up to 15 ms) to fully study the chemical kinetics and combustion chemistry of a reaction in a shock-tube experiment. Using mathematical models, analysis was performed studying the effects of temperature, pressure, shock-tube inner diameter, and test-port location at various test times (from 1 20 ms) on temperature maintenance. Three models, each more complex than the previous, were used to simulate test conditions in the endwall region behind the reflected shock wave with Ar and N2 as bath gases. Temperature profile, thermal BL thickness, and other parametric results are presented herein. It was observed that higher temperatures and lower pressures contributed to a thicker thermal boundary layer, as did shrinking inner diameter. Thus it was found that a test case such as 800K and 50 atm in a 16.2-cm-diameter shock tube in Argon maintained thermal integrity much better than other cases pronounced by a thermal boundary layer < 1 mm thick and an average temperature > 799.9 K from 120 ms.
Show less - Date Issued
- 2007
- Identifier
- CFE0001593, ucf:47162
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001593
- Title
- Heat and fluid flow characterization of a single-hole-per-row impingement channel at multiple impingement heights.
- Creator
-
Claretti, Roberto, Kapat, Jayanta, Kassab, Alain, Raghavan, Seetha, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
The present work studies the relationship between target and sidewall surfaces of a multi-row, narrow impingement channel at various jet heights with one impingement hole per row. Temperature sensitive paint and constant flux heaters are used to gather heat transfer data on the target and side walls. Jet-to-target distance is set to 1, 2, 3, 5, 7 and 9 jet diameters. The channel width is 4 jet diameters and the jet stream wise spacing is 5 jet diameters. All cases were run at Reynolds numbers...
Show moreThe present work studies the relationship between target and sidewall surfaces of a multi-row, narrow impingement channel at various jet heights with one impingement hole per row. Temperature sensitive paint and constant flux heaters are used to gather heat transfer data on the target and side walls. Jet-to-target distance is set to 1, 2, 3, 5, 7 and 9 jet diameters. The channel width is 4 jet diameters and the jet stream wise spacing is 5 jet diameters. All cases were run at Reynolds numbers ranging from 5,000 to 30,000. Pressure data is also gathered and used to calculate the channel mass flux profiles, used to better understand the flow characteristics of the impingement channel. While target plate heat transfer profiles have been thoroughly studied in the literature, side wall data has only recently begun to be studied. The present work shows the significant impact the side walls provide to the overall heat transfer capabilities of the impingement channel. It was shown that the side walls provide a significant amount of heat transfer to the channel. A channel height of three diameters was found to be the optimum height in order to achieve the largest heat transfer rates out of all channels.
Show less - Date Issued
- 2013
- Identifier
- CFE0004985, ucf:49592
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004985
- Title
- Investigation of Novel Fin Structures Enhancing Micro Heat Sink Thermal Performance.
- Creator
-
Ismayilov, Fuad, Peles, Yoav, Kassab, Alain, Putnam, Shawn, Akturk, Ali, University of Central Florida
- Abstract / Description
-
Operating temperature in electronics applications is continuously increasing. Therefore, for the past few decades, high heat flux removing micro heat sinks are investigated in terms of heat transfer effectiveness. This study generally concentrates on improving the passive heat transfer techniques. Micro heat sinks used in experiments are fabricated using MEMS techniques. Resistance temperature detectors, RTDs, were used for temperature measurements. The experimental data was obtained for...
Show moreOperating temperature in electronics applications is continuously increasing. Therefore, for the past few decades, high heat flux removing micro heat sinks are investigated in terms of heat transfer effectiveness. This study generally concentrates on improving the passive heat transfer techniques. Micro heat sinks used in experiments are fabricated using MEMS techniques. Resistance temperature detectors, RTDs, were used for temperature measurements. The experimental data was obtained for single and two phase flow regions; however, only single phase flow results were considered in numerical simulations. Numerical validations were performed on the micro heat sinks, including cylinder and hydrofoil shaped pin fins. Following the validation phase, optimization has been performed to further improve the hydraulic and thermal performance. DOE study showed that the chord length and leading edge size of the hydrofoil pin fin are significant contributors to the thermal performance. The ranges of geometrical variables were identified and fed into multi-objective optimization cycles implementing the multi-objective genetic algorithm. The optimization objectives were to minimize pumping requirements while enhancing the local and global heat transfer effectiveness over the surface of the heater in single phase flow environment. A broad range of geometries were obtained with an acceptable tradeoff between thermal and hydraulic performance for low Reynolds number. Additionally, tandem geometries were investigated and showed that higher heat transfer effectiveness could be obtained with acceptable pumping power requirements. The importance of such optimization studies before the experimental testing is highlighted, and novel geometries are presented for further experimental investigations. Thermal performance improvement of 28% was obtained via implementing proposed geometries with only a 12% pressure drop increase. Local heat transfer optimization, aiming to decrease the local temperatures were also performed using doublet pin fin configurations. Results showed that tandem hydrofoils could control the flow with minimum pressure drops while reaching the desired low local temperatures.
Show less - Date Issued
- 2019
- Identifier
- CFE0007821, ucf:52828
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007821
- Title
- INTERACTION BETWEEN SECONDARY FLOW AND FILM COOLING JETS OF A REALISTIC ANNULAR AIRFOIL CASCADE (HIGH MACH NUMBER).
- Creator
-
Nguyen, Cuong, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Film cooling is investigated on a flat plate both numerically and experimentally. Conical shaped film hole are investigated extensively and contribute to the current literature data, which is extremely rare in the open public domain. Both configuration of the cylindrical film holes, with and without a trench, are investigated in detail. Design of experiment technique was performed to find an optimum combination of both geometrical and fluid parameters to achieve the best film cooling...
Show moreFilm cooling is investigated on a flat plate both numerically and experimentally. Conical shaped film hole are investigated extensively and contribute to the current literature data, which is extremely rare in the open public domain. Both configuration of the cylindrical film holes, with and without a trench, are investigated in detail. Design of experiment technique was performed to find an optimum combination of both geometrical and fluid parameters to achieve the best film cooling performance. From this part of the study, it shows that film cooling performance can be enhanced up to 250% with the trenched film cooling versus non-trenched case provided the same amount of coolant. Since most of the relevant open literature is about film cooling on flat plate endwall cascade with linear extrusion airfoil, the purpose of the second part of this study is to examine the interaction of the secondary flow inside a 3D cascade and the injected film cooling jets. This is employed on the first stage of the aircraft gas turbine engine to protect the curvilinear (annular) endwall platform. The current study investigates the interaction between injected film jets and the secondary flow both experimentally and numerically at high Mach number (M=0.7). Validation shows good agreement between obtained data with the open literature. In general, it can be concluded that with an appropriate film coolant to mainstream blowing ratio, one can not only achieve the best film cooling effectiveness (FCE or η) on the downstream endwall but also maintain almost the same aerodynamic loss as in the un-cooled baseline case. Film performance acts nonlinearly with respect to blowing ratios as with film cooling on flat plate, in the other hand, with a right blowing ratio, film cooling performance is not affect much by secondary flow. In turn, film cooling jets do not increase pressure loss at the downstream wake area of the blades.
Show less - Date Issued
- 2010
- Identifier
- CFE0003546, ucf:48944
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003546
- Title
- Semi-Analytical Solutions of Non-linear Differential Equations Arising in Science and Engineering.
- Creator
-
Dewasurendra, Mangalagama, Vajravelu, Kuppalapalle, Mohapatra, Ram, Rollins, David, Kumar, Ranganathan, University of Central Florida
- Abstract / Description
-
Systems of coupled non-linear differential equations arise in science and engineering are inherently nonlinear and difficult to find exact solutions. However, in the late nineties, Liao introduced Optimal Homotopy Analysis Method (OHAM), and it allows us to construct accurate approximations to the systems of coupled nonlinear differential equations.The drawback of OHAM is, we must first choose the proper auxiliary linear operator and then solve the linear higher-order deformation equation by...
Show moreSystems of coupled non-linear differential equations arise in science and engineering are inherently nonlinear and difficult to find exact solutions. However, in the late nineties, Liao introduced Optimal Homotopy Analysis Method (OHAM), and it allows us to construct accurate approximations to the systems of coupled nonlinear differential equations.The drawback of OHAM is, we must first choose the proper auxiliary linear operator and then solve the linear higher-order deformation equation by spending lots of CPU time. However, in the latest innovation of Liao's " Method of Directly Defining inverse Mapping (MDDiM)" which he introduced to solve a single nonlinear ordinary differential equation has great freedom to define the inverse linear map directly. In this way, one can solve higher order deformation equations quickly, and it is unnecessary to calculate an inverse linear operator.Our primary goal is to extend MDDiM to solve systems of coupled nonlinear ordinary differential equations. In the first chapter, we will introduce MDDiM and briefly discuss the advantages of MDDiM Over OHAM. In the second chapter, we will study a nonlinear coupled system using OHAM. Next three chapters, we will apply MDDiM to coupled non-linear systems arise in mechanical engineering to study fluid flow and heat transfer. In chapter six we will apply this novel method to study coupled non-linear systems in epidemiology to investigate how diseases spread throughout time. In the last chapter, we will discuss our conclusions and will propose some future work. Another main focus is to compare MDDiM with OHAM.
Show less - Date Issued
- 2019
- Identifier
- CFE0007624, ucf:52551
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007624
- Title
- A MODEL INTEGRATED MESHLESS SOLVER (MIMS) FOR FLUID FLOW AND HEAT TRANSFER.
- Creator
-
Gerace, Salvadore, Kassab, Alain, University of Central Florida
- Abstract / Description
-
Numerical methods for solving partial differential equations are commonplace in the engineering community and their popularity can be attributed to the rapid performance improvement of modern workstations and desktop computers. The ubiquity of computer technology has allowed all areas of engineering to have access to detailed thermal, stress, and fluid flow analysis packages capable of performing complex studies of current and future designs. The rapid pace of computer development, however,...
Show moreNumerical methods for solving partial differential equations are commonplace in the engineering community and their popularity can be attributed to the rapid performance improvement of modern workstations and desktop computers. The ubiquity of computer technology has allowed all areas of engineering to have access to detailed thermal, stress, and fluid flow analysis packages capable of performing complex studies of current and future designs. The rapid pace of computer development, however, has begun to outstrip efforts to reduce analysis overhead. As such, most commercially available software packages are now limited by the human effort required to prepare, develop, and initialize the necessary computational models. Primarily due to the mesh-based analysis methods utilized in these software packages, the dependence on model preparation greatly limits the accessibility of these analysis tools. In response, the so-called meshless or mesh-free methods have seen considerable interest as they promise to greatly reduce the necessary human interaction during model setup. However, despite the success of these methods in areas demanding high degrees of model adaptability (such as crack growth, multi-phase flow, and solid friction), meshless methods have yet to gain notoriety as a viable alternative to more traditional solution approaches in general solution domains. Although this may be due (at least in part) to the relative youth of the techniques, another potential cause is the lack of focus on developing robust methodologies. The failure to approach development from a practical perspective has prevented researchers from obtaining commercially relevant meshless methodologies which reach the full potential of the approach. The primary goal of this research is to present a novel meshless approach called MIMS (Model Integrated Meshless Solver) which establishes the method as a generalized solution technique capable of competing with more traditional PDE methodologies (such as the finite element and finite volume methods). This was accomplished by developing a robust meshless technique as well as a comprehensive model generation procedure. By closely integrating the model generation process into the overall solution methodology, the presented techniques are able to fully exploit the strengths of the meshless approach to achieve levels of automation, stability, and accuracy currently unseen in the area of engineering analysis. Specifically, MIMS implements a blended meshless solution approach which utilizes a variety of shape functions to obtain a stable and accurate iteration process. This solution approach is then integrated with a newly developed, highly adaptive model generation process which employs a quaternary triangular surface discretization for the boundary, a binary-subdivision discretization for the interior, and a unique shadow layer discretization for near-boundary regions. Together, these discretization techniques are able to achieve directionally independent, automatic refinement of the underlying model, allowing the method to generate accurate solutions without need for intermediate human involvement. In addition, by coupling the model generation with the solution process, the presented method is able to address the issue of ill-constructed geometric input (small features, poorly formed faces, etc.) to provide an intuitive, yet powerful approach to solving modern engineering analysis problems.
Show less - Date Issued
- 2010
- Identifier
- CFE0003299, ucf:48489
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003299
- Title
- Multi-Row Film Cooling Boundary Layers.
- Creator
-
Natsui, Gregory, Kapat, Jayanta, Raghavan, Seetha, Vasu Sumathi, Subith, University of Central Florida
- Abstract / Description
-
High fidelity measurements are necessary to validate existing and future turbulence models for the purpose of producing the next generation of more efficient gas turbines. The objective of the present study is to conduct several different measurements of multi-row film cooling arrays in order to better understand the physics involved with injection of coolant through multiple rows of discrete holes into a flat plate turbulent boundary layer. Adiabatic effectiveness distributions are measured...
Show moreHigh fidelity measurements are necessary to validate existing and future turbulence models for the purpose of producing the next generation of more efficient gas turbines. The objective of the present study is to conduct several different measurements of multi-row film cooling arrays in order to better understand the physics involved with injection of coolant through multiple rows of discrete holes into a flat plate turbulent boundary layer. Adiabatic effectiveness distributions are measured for several multi-row film cooling geometries. The geometries are designed with two different hole spacings and two different hole types to yield four total geometries. One of the four geometries tested for adiabatic effectiveness was selected for flowfield measurements. The wall and flowfield are studied with several testing techniques, including: particle image velocimetry, hot wire anemometry, pressure sensitive paint and discrete gas sampling.
Show less - Date Issued
- 2015
- Identifier
- CFE0005982, ucf:50776
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005982
- Title
- FUNDAMENTAL UNDERSTANDING OF INTERACTIONS AMONG FLOW, TURBULENCE, AND HEAT TRANSFER IN JET IMPINGEMENT COOLING.
- Creator
-
Hossain, Md. Jahed, Kapat, Jayanta, Ahmed, Kareem, Gordon, Ali, Wiegand, Rudolf, University of Central Florida
- Abstract / Description
-
The flow physics of impinging jet is very complex and is not fully understood yet. The flow field in an impingement problem comprised of three different distinct regions: a free jet with a potential core, a stagnation region where the velocity goes to zero as the jet impinges onto the wall and a creation of wall jet region where the boundary layer grows radially outward after impinging. Since impingement itself is a broad topic, effort is being made in the current study to narrow down on...
Show moreThe flow physics of impinging jet is very complex and is not fully understood yet. The flow field in an impingement problem comprised of three different distinct regions: a free jet with a potential core, a stagnation region where the velocity goes to zero as the jet impinges onto the wall and a creation of wall jet region where the boundary layer grows radially outward after impinging. Since impingement itself is a broad topic, effort is being made in the current study to narrow down on three particular geometric configurations (a narrow wall, an array impingement configuration and a curved surface impingement configuration) that shows up in a typical gas turbine impingement problem in relation to heat transfer. Impingement problems are difficult to simulate numerically using conventional RANS models. It is worth noting that the typical RANS model contains a number of calibrated constants and these have been formulated with respect to relatively simple shear flows. As a result typically these isotropic eddy viscosity models fail in predicting the correct heat transfer value and trend in impingement problem where the flow is highly anisotropic. The common RANS-based models over predict stagnation heat transfer coefficients by as much as 300% when compared to measured values. Even the best of the models, the v^2-f model, can be inaccurate by up to 30%. Even though there is myriad number of experimental and numerical work published on single jet impingement; the knowledge gathered from these works cannot be applied to real engineering impingement cooling application as the dynamics of flow changes completely. This study underlines the lack of experimental flow physics data in published literature on multiple jet impingement and the author emphasized how important it is to have experimental data to validate CFD tools and to determine the suitability of Large Eddy Simulation (LES) in industrial application. In the open literature there is not enough study where experimental heat transfer and flow physics data are combined to explain the behavior for gas turbine impingement cooling application. Often it is hard to understand the heat transfer behavior due to lack of time accurate flow physics data hence a lot of conjecture has been made to explain the phenomena. The problem is further exacerbated for array of impingement jets where the flow is much more complex than a single round jet. The experimental flow field obtained from Particle Image Velocimetry (PIV) and heat transfer data obtained from Temperature Sensitive Paint (TSP) from this work will be analyzed to understand the relationship between flow characteristics and heat transfer for the three types of novel geometry mentioned above.There has not been any effort made on implementing LES technique on array impingement problem in the published literature. Nowadays with growing computational power and resources CFD are widely used as a design tool. To support the data gathered from the experiment, LES is carried out in narrow wall impingement cooling configuration. The results will provide more accurate information on impingement flow physics phenomena where experimental techniques are limited and the typical RANS models yield erroneous resultThe objective of the current study is to provide a better understanding of impingement heat transfer in relation to flow physics associated with it. As heat transfer is basically a manifestation of the flow and most of the flow in real engineering applications is turbulent, it is very important to understand the dynamics of flow physics in an impingement problem. The work emphasis the importance of understanding mean velocities, turbulence, jet shear layer instability and its importance in heat transfer application. The present work shows detailed information of flow phenomena using Particle Image Velocimetry (PIV) in a single row narrow impingement channel. Results from the RANS and LES simulations are compared with Particle Image Velocimetry (PIV) data. The accuracy of LES in predicting the flow field and heat transfer of an impingement problem is also presented the in the current work as it is validated against experimental flow field measured through PIV.Results obtained from the PIV and LES shows excellent agreement for predicting both heat transfer and flow physics data. Some of the key findings from the study highlight the shortcomings of the typical RANS models used for the impingement heat transfer problem. It was found that the stagnation point heat transfer was over predicted by as much as 48% from RANS simulations when compared to the experimental data. A lot of conjecture has been made in the past for RANS' ability to predict the stagnation point heat transfer correctly. The length of the potential core for the first jet was found to be ~ 2D in RANS simulations as oppose to 1D in PIV and LES, confirm the possible underlying reason for this discrepancy. The jet shear layer thickness was underpredicted by ~ 40% in RANS simulations proving the model is not diffusive enough for a flow like jet impingement. Turbulence production due to shear stress was over predicted by ~130% and turbulence production due to normal stresses were underpredicted by ~40 % in RANS simulation very close to the target wall showing RANS models fail where both strain rate and shear stress plays a pivotal role in the dynamics of the flow. In the closing, turbulence is still one of the most difficult problems to solve accurately, as has been the case for about a century. A quote below from the famous mathematician, Horace Lamb (1849-1934) express the level of difficulty and frustration associated with understanding turbulence in fluid mechanics. (")I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic.(")Source: http://scienceworld.wolfram.com/biography/Lamb.htmlThis dissertation is expected to shed some light onto one specific example of turbulent flows.
Show less - Date Issued
- 2016
- Identifier
- CFE0006463, ucf:51424
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006463
- Title
- Catalytically Enhanced Heterogeneous Combustion of methane.
- Creator
-
Terracciano, Anthony, Orlovskaya, Nina, Vasu Sumathi, Subith, Chow, Louis, Kassab, Alain, University of Central Florida
- Abstract / Description
-
Heterogeneous combustion is an advanced internal combustion technique, which enables heat recuperation within the flame by utilizing a highly porous ceramic media as a regenerator. Heat released within the gas phase convectively transfers to the solid media. This heat within the solid media then travels towards the inlet, enabling reactant preheating. Such heat redistribution enables stable burning of both ultra-lean fuel/air mixtures, forming a more diffuse flame through the combustion...
Show moreHeterogeneous combustion is an advanced internal combustion technique, which enables heat recuperation within the flame by utilizing a highly porous ceramic media as a regenerator. Heat released within the gas phase convectively transfers to the solid media. This heat within the solid media then travels towards the inlet, enabling reactant preheating. Such heat redistribution enables stable burning of both ultra-lean fuel/air mixtures, forming a more diffuse flame through the combustion chamber, and results in reduced pollutant formation. To further enhance heterogeneous combustion, the ceramic media can be coated with catalytically active materials, which facilitates surface based chemical reactions that could occur in parallel with gas phase reactions.Within this work, a flow stabilized heterogeneous combustor was designed and developed consisting of a reactant delivery nozzle, combustion chamber, and external instrumentation. The reactant delivery nozzle enables the combustor to operate on mixtures of air, liquid fuel, and gaseous fuel. Although this combustor has high fuel flexibility, only gaseous methane was used within the presented experiments. Within the reactant delivery nozzle, reactants flow through a tube mixer, and a homogeneous gaseous mixture is delivered to the combustion chamber. ?-alumina (?-Al2O3), magnesia stabilized zirconia (MgO-ZrO2), or silicon carbide (SiC) was used as the material for the porous media. Measurement techniques which were incorporated in the combustor include an array of axially mounted thermocouples, an external microphone, an external CCD camera, and a gas chromatograph with thermal conductivity detector which enable temperature measurements, acoustic spectroscopy, characterization of thermal radiative emissions, and composition analysis of exhaust gasses, respectively. Before evaluation of the various solid media in the combustion chamber the substrates and catalysts were characterized using X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectroscopy. MgO-ZrO2 porous media was found to outperform both ?-Al2O3 and SiC matrices, as it was established that higher temperatures for a given equivalence ratio were achieved when the flame was contained within a MgO-ZrO2 matrix. This was explained by the presence of oxygen vacancies within the MgO doped ZrO2 fluorite lattice which facilitated catalytic reactions. Several catalyst compositions were evaluated to promote combustion within a MgO-ZrO2 matrix even further.Catalysts such as: Pd enhanced WC, ZrB2, Ce0.80Gd0.20O1.90, LaCoO3, La0.80Ca0.20CoO3, La0.75Sr0.25Fe0.95Ru0.05O3, and La0.75Sr0.25Cr0.95Ru0.05O3; were evaluated under lean fuel/air mixtures. LaCoO3 outperformed all other catalysts, by enabling the highest temperatures within the combustion chamber, followed by Ce0.80Gd0.20O1.90. Both LaCoO3 and Ce0.80Gd0.20O1.90 enabled a flame to exist at ?=0.45(&)#177;0.02, however LaCoO3 caused the flame to be much more stable. Furthermore, it was discovered that the coating of MgO-ZrO2 with LaCoO3 significantly enhanced the total emissive power of the combustion chamber. In this work as acoustic spectroscopy was used to characterize heterogeneous combustion for the first time. It was found that there is a dependence of acoustic emission n the equivalence ratio and flame position regardless of media and catalyst combination. It was also found that when different catalysts were used, the acoustic tones produced during combustion at fixed reactant flow rates were distinct
Show less - Date Issued
- 2016
- Identifier
- CFE0006508, ucf:51364
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006508