Current Search: laser (x)
Pages
-
-
Title
-
MONOLITHIC INTEGRATION OF DUAL OPTICAL ELEMENTS ON HIGH POWER SEMICONDUCTOR LASERS.
-
Creator
-
vaissie, laurent, Johnson, Eric, University of Central Florida
-
Abstract / Description
-
This dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to...
Show moreThis dissertation investigates the monolithic integration of dual optical elements on high power semiconductor lasers for emission around 980nm wavelength. In the proposed configuration, light is coupled out of the AlGaAs/GaAs waveguide by a low reflectivity grating coupler towards the substrate where a second monolithic optical element is integrated to improve the device performance or functionality. A fabrication process based on electron beam lithography and plasma etching was developed to control the grating coupler duty cycle and shape. The near-field intensity profile outcoupled by the grating is modeled using a combination of finite-difference time domain (FDTD) analysis of the nonuniform grating and a self-consistent model of the broad area active region. Improvement of the near-field intensity profile in good agreement with the FDTD model is demonstrated by varying the duty cycle from 20% to 55% and including the aspect ratio dependent etching (ARDE) for sub-micron features. The grating diffraction efficiency is estimated to be higher than 95% using a detailed analysis of the losses mechanisms of the device. The grating reflectivity is estimated to be as low as 2.10-4. The low reflectivity of the light extraction process is shown to increase the device efficiency and efficiently suppress lasing oscillations if both cleaved facets are replaced by grating couplers to produce 1.5W QCW with 11nm bandwidth into a single spot a few mm above the device. Peak power in excess of 30W without visible COMD is achieved in this case. Having optimized, the light extraction process, we demonstrate the integration of three different optical functions on the substrate of the surface-emitting laser. First, a 40 level refractive microlens milled using focused ion beam shows a twofold reduction of the full-width half maximum 1mm above the device, showing potential for monolithic integration of coupling optics on the wafer. We then show that differential quantum efficiency of 65%, the highest reported for a grating-coupled device, can be achieved by lowering the substrate reflectivity using a 200nm period tapered subwavelength grating that has a grating wavevector oriented parallel to the electric field polarization. The low reflectivity structure shows trapezoidal sidewall profiles obtained using a soft mask erosion technique in a single etching step. Finally, we demonstrate that, unlike typical methods reported so far for in-plane beam-shaping of laser diodes, the integration of a beam-splitting element on the device substrate does not affect the device efficiency. The proposed device configuration can be tailored to satisfy a wide range of applications including high power pump lasers, superluminescent diodes, or optical amplifiers applications.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000223, ucf:46253
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000223
-
-
Title
-
CONTROL AND STABILIZATION OF LASER PLASMASOURCES FOR EUV LITHOGRAPHY.
-
Creator
-
Cunado, Jose, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
Extreme Ultraviolet (EUV) sources rely on droplet laser plasmas for EUV generation. These sources consist of a small (30 μm diameter) droplet which is excited into plasma emitting EUV around 13.5 nm, the industry's chosen wavelength for EUV lithography (EUVL). These sources are the best candidates for the commercialization of EUVL allowing mass production of computer chips with 32 nm or even smaller feature size. However, the biggest challenges which EUV source developers encounter...
Show moreExtreme Ultraviolet (EUV) sources rely on droplet laser plasmas for EUV generation. These sources consist of a small (30 μm diameter) droplet which is excited into plasma emitting EUV around 13.5 nm, the industry's chosen wavelength for EUV lithography (EUVL). These sources are the best candidates for the commercialization of EUVL allowing mass production of computer chips with 32 nm or even smaller feature size. However, the biggest challenges which EUV source developers encounter today are the issues of conversion efficiency (CE) and debris.In order to satisfy the technology requirements, the source will need to meet high levels of stability, performance, and lifetime. Our tin-doped droplet plasma has demonstrated high CE and low debris resulting in long lifetime. Long term stability is obtained through the use of novel tracking techniques and active feedback. The laser plasma targeting system combines optical illumination and imaging, droplet technology innovation, advanced electronics, and custom software which act in harmony to provide complete stabilization of the droplets. Thus, a stable, debris-free light source combined with suitable collection optics can provide useful EUV radiation power. Detailed description of the targeting system and the evaluation of the system will be presented.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001790, ucf:47278
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001790
-
-
Title
-
MEASUREMENT AND CHARACTERIZATION OF MICROWAVE TRANSIENT ELECTROMAGNETIC FIELDS GENERATED FROM LASER/MATTER INTERACTION.
-
Creator
-
Barbieri, Nicholas, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
From past experiments conducted with high intensity lasers, it has been known for some time that laser matter interactions result in the emission of short, transient electromagnetic pulses. Previous investigations into laser generated electromagnetic pulses provide basic information regarding frequencies where such pulses may be present, along with the time duration of the pulses. Such investigations have also demonstrated a number of measurement techniques in which basic information on the...
Show moreFrom past experiments conducted with high intensity lasers, it has been known for some time that laser matter interactions result in the emission of short, transient electromagnetic pulses. Previous investigations into laser generated electromagnetic pulses provide basic information regarding frequencies where such pulses may be present, along with the time duration of the pulses. Such investigations have also demonstrated a number of measurement techniques in which basic information on the pulses may be obtained. The purpose of this current investigation is to obtain a more thorough description and understands of electromagnetic pulses generated for laser matter interaction. To this end, spatial radiation patterns emanating from various laser excited matter sources was predicted using antenna theory for far field radiators. Experimentally, it is the intention of this investigation to gather comprehensive time and frequency domain data on laser matter generated electromagnetic pulses using a number of specific laser targets. Radiation detection techniques using broadband, calibrated EMC horn antennas were devised. A unique measurement system known as an inverse superhetereodyne receiver was designed, tested and demonstrated. An experimental setup using such instrumentation was established. Using the above instrumentation and experimental setup should yield comprehensive time and frequency domain data over a spectra range of 1-40 GHz and with a time resolution of 50 ps. Because the experimental system employed is calibrated, measurements can be corresponded to incident electromagnetic fields. Several tests were conducted to ensure the proper operation of experimental apparatus. A modulation test was conducted on the inverse superhetereodyne receiver to ensure that the experimentally observed signals appeared when and where predicted within the receiver's bandwidth. The experimental setup was used to measure radiation emitted from an electrostatic discharge source of known distance and discharge voltage. Frequency domain data from the discharges were collected and compiled using a Matlab application ultimately intended to measure laser matter interaction generated electromagnetic pulses, resulting in a compiled frequency domain description comprising 1-17 GHz. The inverse Fourier transform was used to retrieve the time domain response from the compiled data. The discharge gaps characteristics where systematically altered as to allow a parametric study of the compiled data. The discharge measurements demonstrate the measurement system's ability to analyze unknown, short duration; broadband microwave signals.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000879, ucf:46646
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000879
-
-
Title
-
COHERENT BEAM COMBINING OF ULTRASHORT LASER PULSES.
-
Creator
-
Azim, Ahmad, Shah, Lawrence, University of Central Florida
-
Abstract / Description
-
Ultrashort pulsed lasers have become critical to understanding light-matter interactions in new regimes such as generation of attosecond pulses, laser filamentation, and intense relativistic processes. Development of more powerful and energetic ultrafast lasers is required for advancing these fields of study. Several petawatt class systems now exist with more in development to further scale peak power and extend the frontier of ultrafast laser technology. Another relevant solution to the...
Show moreUltrashort pulsed lasers have become critical to understanding light-matter interactions in new regimes such as generation of attosecond pulses, laser filamentation, and intense relativistic processes. Development of more powerful and energetic ultrafast lasers is required for advancing these fields of study. Several petawatt class systems now exist with more in development to further scale peak power and extend the frontier of ultrafast laser technology. Another relevant solution to the scaling of energy and power of ultrashort pulses is coherent beam combining (CBC). CBC is useful for not only scaling of laser parameters but also to mitigate parasitic nonlinear processes associated with high-intensity ultrashort pulses. In addition CBC is flexible and can be implemented as part of other techniques for ultrashort pulse amplification such as optical-parametric chirped-pulse amplification (OPCPA). In this thesis, CBC of ultrashort laser pulses is investigated based upon the method known as divided-pulse amplification (DPA). Active, passive and hybrid DPA have been achieved in a flashlamp-pumped Nd:YAG laser seeded from a Ti:sapphire mode-locked laser. Picosecond pulses at a repetition rate of 2.5 Hz were amplified and combined to record energy of 216 mJ with a combination efficiency of 80%. Engineering of the Nd:YAG amplifier chain for high-efficiency energy extraction is presented. In addition, phasing of actively divided pulses with a CW pilot laser co-propagating with the pulsed beam is also demonstrated. Analysis of multiple DPA configurations shows the viability of the method for a variety of different laser architectures including discussion of design restrictions.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFH2000034, ucf:45599
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000034
-
-
Title
-
ANNULAR BEAM SHAPING AND OPTICAL TREPANNING.
-
Creator
-
Zeng, Danyong, Kar, Aravinda, University of Central Florida
-
Abstract / Description
-
Percussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an xy galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The...
Show morePercussion drilling and trepanning are two laser drilling methods. Percussion drilling is accomplished by focusing the laser beam to approximately the required diameter of the hole, exposing the material to one or a series of laser pulses at the same spot to melt and vaporize the material. Drilling by trepanning involves cutting a hole by rotating a laser beam with an optical element or an xy galvo-scanner. Optical trepanning is a new laser drilling method using an annular beam. The annular beams allow numerous irradiance profiles to supply laser energy to the workpiece and thus provide more flexibility in affecting the hole quality than a traditional circular laser beam. Heating depth is important for drilling application. Since there are no good ways to measure the temperature inside substrate during the drilling process, an analytical model for optical trepanning has been developed by considering an axisymmetric, transient heat conduction equation, and the evolutions of the melting temperature isotherm, which is referred to as the melt boundary in this study, are calculated to investigate the influences of the laser pulse shapes and intensity profiles on the hole geometry. This mathematical model provides a means of understanding the thermal effect of laser irradiation with different annular beam shapes. To take account of conduction in the solid, vaporization and convection due to the melt flow caused by an assist gas, an analytical two-dimensional model is developed for optical trepanning. The influences of pulse duration, laser pulse length, pulse repetition rate, intensity profiles and beam radius are investigated to examine their effects on the recast layer thickness, hole depth and taper. The ray tracing technique of geometrical optics is employed to design the necessary optics to transform a Gaussian laser beam into an annular beam of different intensity profiles. Such profiles include half Gaussian with maximum intensities at the inner and outer surfaces of the annulus, respectively, and full Gaussian with maximum intensity within the annulus. Two refractive arrangements have been presented in this study. Geometric optics, or ray optics, describes light propagation in terms of rays. However, it is a simplification of optics, and fails to account for many important optical effects such as diffraction and polarization. The diffractive behaviors of this optical trepanning system are stimulated and analyzed based on the Fresnel diffraction integral. Diffraction patterns of the resulting optical system are measured using a laser beam analyzer and compared with the theoretical results. Based on the theoretical and experimental results, the effects of experimental parameters are discussed. We have designed the annular beam shaping optical elements and the gas delivery system to construct an optical trepanning system. Laser drilling experiments are performed on the Stainless Steel-316 (SS 316) plate and the Inconel 718 (IN 718) plate. The geometry of the trepanning holes with different sizes is presented in this study.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001333, ucf:46965
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001333
-
-
Title
-
EFFECTS OF ATMOSPHERIC TURBULENCE ON THE PROPAGATION OF FLATTENED GAUSSIAN OPTICAL BEAMS.
-
Creator
-
Cowan, Doris, Andrews, Larry, University of Central Florida
-
Abstract / Description
-
In an attempt to mitigate the effects of the atmosphere on the coherence of an optical (laser) beam, interest has recently been shown in changing the beam shape to determine if a different power distribution at the transmitter will reduce the effects of the random fluctuations in the refractive index. Here, a model is developed for the field of a flattened Gaussian beam as it propagates through atmospheric turbulence, and the resulting effects upon the scintillation of the beam and upon beam...
Show moreIn an attempt to mitigate the effects of the atmosphere on the coherence of an optical (laser) beam, interest has recently been shown in changing the beam shape to determine if a different power distribution at the transmitter will reduce the effects of the random fluctuations in the refractive index. Here, a model is developed for the field of a flattened Gaussian beam as it propagates through atmospheric turbulence, and the resulting effects upon the scintillation of the beam and upon beam wander are determined. A comparison of these results is made with the like effects on a standard TEM00 Gaussian beam. The theoretical results are verified by comparison with a computer simulation model for the flattened Gaussian beam. Further, a determination of the probability of fade and of mean fade time under weak fluctuation conditions is determined using the widely accepted lognormal model. Although this model has been shown to be somewhat optimistic when compared to results obtained in field tests, it has value here in allowing us to compare the effects of atmospheric conditions on the fade statistics of the FGB with those of the lowest order Gaussian beam. The effective spot size of the beam, as it compares to the spot size of the lowest order Gaussian beam, is also analyzed using Carter's definition of spot size for higher order Gaussian beams.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001377, ucf:46969
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001377
-
-
Title
-
EXPERIMENTAL AND NUMERICAL INVESTIGATIONS OF MICRODROPLET EVAPORATION WITH A FORCED PINNED CONTACT LINE.
-
Creator
-
Gleason, Kevin, Putnam, Shawn, University of Central Florida
-
Abstract / Description
-
Experimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (1) validating numerical models with experimental data, (2) identifying how changes in the contact line influences evaporative heat transfer and (3) determining methods of controlling contact line dynamics during evaporation. Droplets are formed using a bottom-up methodology, where a computer-controlled syringe pump supplies water...
Show moreExperimental and numerical investigations of water microdroplet evaporation on heated, laser patterned polymer substrates are reported. The study is focused on both (1) validating numerical models with experimental data, (2) identifying how changes in the contact line influences evaporative heat transfer and (3) determining methods of controlling contact line dynamics during evaporation. Droplets are formed using a bottom-up methodology, where a computer-controlled syringe pump supplies water to a ~200 um in diameter fluid channel within the heated substrate. This methodology facilitates precise control of the droplets growth rate, size, and inlet temperature. In addition to this microchannel supply line, the substrate surfaces are laser patterned with a moat-like trench around the fluid-channel outlet, adding additional control of the droplets contact line motion, area, and contact angle. In comparison to evaporation on non-patterned substrate surfaces, this method increases the contact line pinning time by ~60% of the droplets lifetime. The evaporation rates are compared to the predictions of a commonly reported model based on a solution of the Laplace equation, providing the local evaporation flux along the droplets liquid-vapor interface. The model consistently overpredicts the evaporation rate, which is presumable due to the models constant saturated vapor concentration along the droplets liquid-vapor interface. In result, a modified version of the model is implemented to account for variations in temperature along the liquid-vapor interface. A vapor concentration distribution is then imposed using this temperature distribution, increasing the accuracy of predicting the evaporation rate by ~7.7% and ~9.9% for heated polymer substrates at Ts = 50C and 65C, respectively.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFH0004566, ucf:45212
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004566
-
-
Title
-
THE DEVELOPMENT OF SCALABLE PUMP TECHNIQUES FOR GG IAG FIBER LASERS AND PASSIVE ATHERMALIZATION TECHNIQUES FOR SOLID STATE LASERS.
-
Creator
-
Hageman, William, Bass, Michael, University of Central Florida
-
Abstract / Description
-
This dissertation consists of two parts: research pertaining to the development of scalable pump techniques for gain guided index-antiguided fiber lasers and research relating to the development of passive athermalization schemes for solid state lasers. The first section primarily details the development of a side pump scheme that allows for power scaling of gain-guided index anti-guided fibers. While these fibers have been demonstrated in past research, none have used a pump technology...
Show moreThis dissertation consists of two parts: research pertaining to the development of scalable pump techniques for gain guided index-antiguided fiber lasers and research relating to the development of passive athermalization schemes for solid state lasers. The first section primarily details the development of a side pump scheme that allows for power scaling of gain-guided index anti-guided fibers. While these fibers have been demonstrated in past research, none have used a pump technology capable of pumping with the efficiencies, uniformity, and necessary length to allow for scaling of the fiber lasers to high output powers. The side pumped scheme developed in this section demonstrates a 6 W output power fiber laser with room for improvement in efficiency and beam quality. The second section details work done on the development of technologies for passively athermalizing the output of solid state laser systems. Techniques for passively removing the dependence of laser output power/energy on the operating temperature of the laser system promise to reduce the weight, power consumption, and cost of fielded laser systems. Methods for achieving passive athermalization are discussed, as well as prior research in laser athermalization, background theory, enabling technologies, and experimental results. This work provides the basis for continued research of passive athermalization and the eventual demonstration of this technology.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0002993, ucf:47938
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002993
-
-
Title
-
An approach to improve the failure rate model of a solid state laser by utilizing the Physics of Failure Methodology.
-
Creator
-
Thompson, Omar, Kincaid, John, Bass, Michael, Clarke, Thomas, Wiegand, Rudolf, Shumaker, Randall, Bass, Michael, University of Central Florida
-
Abstract / Description
-
The ability to predict the failure rate of any military laser is very critical. In-field laser usage does not support the troubleshooting and repairing of a complex electro optical system. The only published laser failure rate model was last updated by the Department of Defense in 1975. Consequently, the failure rate predicted is inaccurate due to model deficiencies. This dissertatiodatn has developed a laser failure rate model for diode pumped lasers with improved failure rate prediction...
Show moreThe ability to predict the failure rate of any military laser is very critical. In-field laser usage does not support the troubleshooting and repairing of a complex electro optical system. The only published laser failure rate model was last updated by the Department of Defense in 1975. Consequently, the failure rate predicted is inaccurate due to model deficiencies. This dissertatiodatn has developed a laser failure rate model for diode pumped lasers with improved failure rate prediction accuracy. The model has surpassed the capabilities of the Department of Defense model by the inclusion of key performance attributes that are currently not taken into account. The scope of work completed was based on a tailored Physics of Failure methodology. The research approach implemented was: 1. Integration of Failure Mode and Effects Analysis to evaluate deployed laser failure. 2. Beam simulation for alignment tolerance analysis. 3. Thermal and vibration effects analysis on laser performance. 4. Analysis and development of a methodology to represent a resonator failure rate model. A secondary contribution of this research effort is supporting the update of the current laser failure rate model. The success of revising the current model relies on leveraging the work of other organizations in the area of failure rate modeling and reliability predictions.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004587, ucf:49214
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004587
-
-
Title
-
Electrospray and Superlens Effect of Microdroplets for Laser-Assisted Nanomanufacturing.
-
Creator
-
Castillo Orozco, Eduardo, Kumar, Ranganathan, Mansy, Hansen, Peles, Yoav, University of Central Florida
-
Abstract / Description
-
Nanoparticles of various materials are known to exhibit excellent mechanical, chemical, electrical, and optical properties. However, it is difficult to deposit and transform nanoparticles into large two-dimensional and three-dimensional structures, such as thin films and discrete arrays. Electrospray technology and laser heating enable the deposition of these nanoparticles through the dual role of microdroplets as nanoparticle carriers and superlenses. The main goals of this dissertation are...
Show moreNanoparticles of various materials are known to exhibit excellent mechanical, chemical, electrical, and optical properties. However, it is difficult to deposit and transform nanoparticles into large two-dimensional and three-dimensional structures, such as thin films and discrete arrays. Electrospray technology and laser heating enable the deposition of these nanoparticles through the dual role of microdroplets as nanoparticle carriers and superlenses. The main goals of this dissertation are to delineate the electrospray modes, to achieve subwavelength focusing, and to enable a process for the deposition of nanoparticles into microlayers and discrete nanodots (a nanodot is a cluster of nanoparticles) on rigid and flexible substrates. This additive manufacturing process is based on the electrospray generation of water microdroplets that carry nanoparticles onto a substrate and the laser sintering of these nanoparticles. The process involves injecting nanoparticles (contained inside electric field-driven water microdroplets) into a hollow laser beam. The laser beam heats the droplets, causing the water to evaporate and the nanoparticles to sinter and form deposit of material on the substrate.The electrohydrodynamic inkjet printing of nanoparticle suspensions has been accomplished by the operation of an electrospray in microdripping mode and it allows the deposition of monodisperse microdroplets containing nanoparticles into discrete nanodot arrays, narrow lines, and thin films. For flow rates with low Reynolds number, the mode changes from dripping to microdripping mode, and then to a planar oscillating microdripping mode as the electric capillary number, Cae increases. The microdripping mode which is important for depositing discrete array of nanodots is found to occur in a narrow range, 2 ? Cae ? 2.5. The effect of the physical properties on the droplet size and frequency of droplet formation is more precisely described by the relative influence of the electric, gravity, viscous, and capillary forces. A scaling analysis is derived from a fundamental force balance and has yielded a parameter based on the electric capillary number, capillary number, and Bond number. Results for different nanoparticle suspensions with a wide range of physical properties show that the normalized radius of droplet, can be correlated using this parameter in both dripping and microdripping modes. The same parameter also correlates the normalized frequency of droplet formation, Nd* as an increasing function in the microdripping mode. Viscosity affects the shape of the cone by resisting its deformation and thus promoting a stable microdripping mode. Reduction in surface tension decreases the droplet size in the electrospray modes. However, the capillary size and electrical conductivity have minimal effect on the size of the ejected droplets. Electrical conductivity affects the transition between microdripping and oscillating microdripping modes. Based on this analysis, it is possible to design the electrospray to produce uniform monodisperse droplets by manipulating the voltage at the electrode, for any desired nanoparticle concentration of a suspension to be sintered on a substrate. For the fabrication of nanodots, a laser beam of wavelength ? = 1064 nm was focused to a diameter smaller than its wavelength. When the microdroplets did not carry nanoparticles, the subwavelength focusing of the laser yielded nanoholes smaller than its wavelength. Results show that tiny features with high resolution can be created by loading microdroplets with nanoparticles and squeezing the laser beam to subwavelength regions. Nanodots of silicon and germanium with diameters between 100 - 500 nm have been deposited on a silicon substrate. This study demonstrates an interdisciplinary mechanism to achieve subwavelength focusing in a laser process. In this process, the microdroplets serve as both a nanoparticle carrier and a superlens that focuses a laser beam to subwavelength diameters up to ? /10, thus overcoming the diffraction limit. The microdroplets are generated from a suspension of nanoparticles using an electrospray technique and the superlens characteristic of these microdroplets is attributed to three optical phenomena such as Maxwell's fish eye lens or L(&)#252;neberg lens, evanescent waves by laser scattering, and evanescent waves by the total internal reflection principle. A microfluidic cooling effect can also contribute to creating subwavelength features. In summary, this work describes a new laser-assisted additive manufacturing process for the fabrication of nanodots and microlayers using nanoparticles of different materials. In this process, microdroplets from an electrospray are used as nanoparticle carriers and superlenses to focus the laser to a diameter smaller than its wavelength. While this process is demonstrated to produce subwavelength holes and nanodots, the process is scalable to produce narrow lines and thin films of semiconductor materials by an additive manufacturing technique. This process extends the application of infrared lasers to the production of nanostructures and nanofeatures, and, therefore, provides a novel technology for nanomanufacturing.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007563, ucf:52579
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007563
-
-
Title
-
High power fiber lasers and fiber devices.
-
Creator
-
Sanjabieznaveh, Zeinab, Amezcua Correa, Rodrigo, Chang, Zenghu, Argenti, Luca, Richardson, Martin, Schulzgen, Axel, University of Central Florida
-
Abstract / Description
-
Fiber lasers and fiber amplifiers have experienced considerable improvements in recent years and demonstrated remarkable power scalability. However, due to high optical intensity in the core, the performance of high power fiber lasers is limited by detrimental nonlinear processes, such as four-wave mixing, self-phase modulation, stimulated Brillouin scattering, and stimulated Raman scattering. To mitigate nonlinear effects, very large mode area (LMA) fibers, which exhibit a mode field...
Show moreFiber lasers and fiber amplifiers have experienced considerable improvements in recent years and demonstrated remarkable power scalability. However, due to high optical intensity in the core, the performance of high power fiber lasers is limited by detrimental nonlinear processes, such as four-wave mixing, self-phase modulation, stimulated Brillouin scattering, and stimulated Raman scattering. To mitigate nonlinear effects, very large mode area (LMA) fibers, which exhibit a mode field diameter larger than 30 ?m have been developed. However, for larger core sizes the discrimination capabilities of conventional fiber designs decrease, consequently, LMA fibers are not strictly single mode which ultimately at high average powers results in sudden degradation of the output beam of a fiber laser or amplifier, namely, modal instability (MI). To suppress higher order modes (HOMs) in LMA fibers, various techniques have been proposed such as large pitch fibers (LPFs), differential bend loss for HOMs, leakage channel fibers, mode filtering with tapers, and chirally coupled cores. This thesis is divided into two parts. In the first two chapters, I focus on simulation, design and characterization of advanced high power fiber amplifiers. In the first chapter, I study the numerical modeling of the MI in active LMA fibers. Using a high fidelity time dependent computer model based on beam propagation method (BPM), taking laser gain and thermal effects into account, I show that engineering pump scheme is a promising technique leading to an appreciable threshold increase in a fiber amplifier. As an example I demonstrate that bi-directional pump scheme increases the instabilities threshold by a factor of ~30% with respect to the forward pump configuration. In the second chapter, I present a novel design of microstructured large pitch, LMA asymmetric rod-type fiber to achieve higher MI threshold. By eliminating mirror symmetries in the cladding of the LPF through six high refractive index germanium-doped silica inclusions, we reduce the overlap of the LP1m-like modes with the core region, which leads to strong HOM delocalization and enhanced preferential gain for the fundamental mode in active fibers. The third and fourth chapters of this thesis are focused on all-fiber mode multiplexers for communication applications. In the third chapter, I present an all-fiber mode selective photonic lantern mode multiplexer designed for launching into few-mode multicore fibers (FM-MCFs). This device is capable of selectively exciting LP01, LP11a and LP11b modes in a seven core configuration resulting in 21 spatial channels, with less than 38 dB crosstalk and with insertion loss below 0.4 dB. This device can be a critical component for the evolution of high capacity, high-density space division multiplexing (SDM) transmission networks based on MCFs.In the fourth chapter, I demonstrate for the first time, an all-fiber orbital angular momentum (OAM) mode multiplexer to efficiently generate and simultaneously multiplex multiple OAM modes within a broad spectral range of at least 550 nm. This innovative all-fiber passive design provides simultaneous multiplexing of multiple orthogonal OAM modes in a single fiber device with low loss and at low design complexity, therefore, it is of grand utility in variety of applications in classical and modern optical studies.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006956, ucf:51632
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006956
-
-
Title
-
An uncooled mid-wave infrared detector based on optical response of laser-doped silicon carbide.
-
Creator
-
Lim, Geunsik, Kar, Aravinda, Coffey, Kevin, Vaidyanathan, Raj, Dhere, Neelkanth, Likamwa, Patrick, University of Central Florida
-
Abstract / Description
-
This dissertation focuses on an uncooled Mid-Wave Infra-Red (MWIR) detector was developed by doping an n-type 4H-SiC with Ga using the laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide, a wide bandgap semiconductor. The dopant creates an energy level of 0.30 eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21 um. The detection mechanism is based on the photoexcitation of electrons...
Show moreThis dissertation focuses on an uncooled Mid-Wave Infra-Red (MWIR) detector was developed by doping an n-type 4H-SiC with Ga using the laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide, a wide bandgap semiconductor. The dopant creates an energy level of 0.30 eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21 um. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refraction index and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the detector, can be measured remotely with a laser beam such as a He-Ne laser. This capability of measuring the detector response remotely makes it a wireless optical detector. The variation of refraction index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refraction index of the doped sample, indicating that the detector is suitable for applications at 4.21 um wavelength. The Ga dopant energy level in the substrate was confirmed by optical absorption spectroscopy. Secondary ion mass spectroscopy (SIMS) of the doped samples revealed an enhancement in the solid solubility of Ga in the substrate when doping is carried out by increasing the number of laser scans. Higher dopant concentration increases the number of holes in the dopant energy level, enabling photoexcitation of more electrons from the valence band by the incident MWIR photons. The detector performance improves as the dopant concentration increases from 1.15(&)#215;1019 to 6.25(&)#215;10^20 cm^-3. The detectivity of the optical photodetector is found to be 1.07(&)#215;10^10 cm?Hz^1/2/W for the case of doping with 4 laser passes. The noise mechanisms in the probe laser, silicon carbide MWIR detector and laser power meter affect the performance of the detector such as the responsivity, noise equivalent temperature difference (NETD) and detectivity. For the MWIR wavelength 4.21 and 4.63 um, the experimental detectivity of the optical photodetector of this study is found to be 1.07(&)#215;10^10 cm?Hz^1/2/W, while the theoretical value is 2.39(&)#215;10^10 cm?Hz^1/2/W. The values of NETD are found to be 404.03 and 15.48 mK based on experimental data for an MWIR radiation source of temperature 25(&)deg;C and theoretical calculation respectively.The doped SiC also has a capability of gas detection since gas emission spectra are in infrared range. Similarly, the sensor is based on the semiconductor optics principle, i.e., an energy gap is created in a semiconductor by doping it with an appropriate dopant to ensure that the energy gap matches with an emission spectral line of the gas of interest. Specifically four sensors have been fabricated by laser doping four quadrants of a 6H-SiC substrate with Ga, Al, Sc and P atoms to detect CO2, NO, CO and NO2 gases respectively. The photons, which are emitted by the gas, excite the electrons in the doped sample and consequently change the electron density in various energy states. This phenomenon affects the refraction index of the semiconductor and, therefore, the reflectivity of the semiconductor is altered by the gas. The optical response of this semiconductor sensor is the reflected power of a probe beam, which is a He-Ne laser beam in this study. The CO2, NO, CO and NO2 gases change the refraction indices of Ga-, Al-, Sc- and Al-doped 6H-SiC, respectively, more prominently than the other gases tested in this study. Hence these doped 6H-SiC samples can be used as CO2, NO, CO and NO2 gas sensors respectively.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005519, ucf:50310
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005519
-
-
Title
-
Transverse mode selection and brightness enhancement in laser resonators by means of volume Bragg gratings.
-
Creator
-
Anderson, Brian, Glebov, Leonid, Zeldovich, Boris, Schulzgen, Axel, Rahman, Talat, University of Central Florida
-
Abstract / Description
-
The design of high power lasers requires large mode areas to overcome various intensity driven nonlinear effects. Increasing the aperture size within the laser can overcome these effects, but typically result in multi-transverse mode output and reduced beam quality, limiting the brightness of the system. As one possible solution, the angular selectivity of a diffractive optical element is proposed as a spatial filter, allowing for the design of compact high brightness sources not possible...
Show moreThe design of high power lasers requires large mode areas to overcome various intensity driven nonlinear effects. Increasing the aperture size within the laser can overcome these effects, but typically result in multi-transverse mode output and reduced beam quality, limiting the brightness of the system. As one possible solution, the angular selectivity of a diffractive optical element is proposed as a spatial filter, allowing for the design of compact high brightness sources not possible with conventional methods of transverse mode selection. This thesis explores the angular selectivity of volume Bragg gratings (VBGs) and their use as spatial transverse mode filters in a laser resonator. Selection of the fundamental mode of a resonator is explored using transmission Bragg gratings (TBGs) as the spatial filter. Simulations and experimental measurements are made for a planar, 1 cm long resonator demonstrating near diffraction limited output (M2 (<) 1.4) for aperture sizes as large as 2.0 mm. Applications to novel fiber laser designs are explored. Single mode operation of a multi-mode Yb3+ doped ribbon fiber laser (core dimensions of 107.8 ?m x 8.3 ?m) is obtained using a single transmission VBG as the filter in an external cavity resonator. Finally, a novel method of selecting a pure higher order mode to oscillate within the gain medium while simultaneously converting this higher order mode to a fundamental mode at an output coupler is proposed and demonstrated. A multiplexed transmission VBG is used as the mode converting element, selecting the 12th higher order mode for amplifications in an Yb3+ doped ribbon fiber laser, while converting the higher order mode of a laser resonator to a single lobed output beam with diffraction limited divergence.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005754, ucf:50103
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005754
-
-
Title
-
INTEGRATED WAVELENGTH STABILIZATION OF BROAD AREA SEMICONDUCTOR LASERS USING A DUAL GRATING REFLECTOR.
-
Creator
-
O'Daniel, Jason, Johnson, Eric, University of Central Florida
-
Abstract / Description
-
A new fully integrated wavelength stabilization scheme based on grating-coupled surface-emitting lasers is explored. This wavelength stabilization scheme relies on two gratings. The first grating is fabricated on the p-side of the semiconductor laser in close proximity to the laser waveguide such that it couples light out of the guided mode of the waveguide into a propagating mode in the substrate; this grating is known as the grating coupler. The second grating is fabricated on the n-side of...
Show moreA new fully integrated wavelength stabilization scheme based on grating-coupled surface-emitting lasers is explored. This wavelength stabilization scheme relies on two gratings. The first grating is fabricated on the p-side of the semiconductor laser in close proximity to the laser waveguide such that it couples light out of the guided mode of the waveguide into a propagating mode in the substrate; this grating is known as the grating coupler. The second grating is fabricated on the n-side of the substrate such that for the stabilization wavelength, this second grating operates in the Littrow condition and is known as the feedback grating. Furthermore with the proper design of the two gratings, the feedback grating will operate under total internal reflection conditions allowing a near unity retro-reflection of the light of the stabilization wavelength. The grating coupler and feedback grating together comprise a dual grating reflector (DGR). The DGR wavelength stabilization scheme is investigated both theoretically by means of numerical modeling and experimentally by integration of a DGR as a wavelength selective reflector into a single quantum well semiconductor laser with a gain peak centered at 975nm. Numerical modeling predicts a peak reflection of approximately 70% including losses and a spectral width of 0.3nm. The integration of a DGR into a semiconductor laser proved both the efficacy of the scheme and also allowed us to experimentally determine the effective reflectivity to be on the order of 62%; the spectral width of light output from these devices is typically on the order of 0.2nm. Furthermore, these devices had light-current characteristic slopes greater than 0.84W/A operating under continuous wave conditions. The DGR was then modified to provide a reflection with two spectral peaks. A semiconductor device incorporating this dual wavelength DGR was fabricated and tested. These devices showed a peak optical power of in excess of 5.5W and a light-current characteristic slope of 0.86W/A in quasi continuous wave operation; these devices also exhibit a large operating current range in which both wavelengths have comparable output powers. Another modified DGR design was investigated for the purpose of providing an even narrower spectral reflection. Devices incorporating this modified design provided an output with a spectral width as narrow as 0.06nm. DGRs were also integrated into an extremely broad area device of an unorthodox geometry; square devices that lase in two orthogonal directions were fabricated and tested. The last idea investigated was combining a DGR wavelength stabilized laser with a tapered semiconductor optical amplifier into a master oscillator power amplifier device, with the optical coupling between the two components provided by identical grating couplers disposed on the p-side surfaces of each of the devices. These master oscillator power amplifiers provide a peak power of 32W when operating under quasi continuous wave operation.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001392, ucf:47004
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001392
-
-
Title
-
HIGH POWER MODE-LOCKED SEMICONDUCTOR LASERS AND THEIR APPLICATIONS.
-
Creator
-
Lee, Shinwook, Delfyett, Peter, University of Central Florida
-
Abstract / Description
-
In this dissertation, a novel semiconductor mode-locked oscillator which is an extension of eXtreme Chirped Pulse Amplification (XCPA) is investigated. An eXtreme Chirped Pulse Oscillator (XCPO) implemented with a Theta cavity also based on a semiconductor gain is presented for generating more than 30ns frequency-swept pulses with more than 100pJ of pulse energy and 3.6ps compressed pulses directly from the oscillator. The XCPO shows the two distinct characteristics which are the scalability...
Show moreIn this dissertation, a novel semiconductor mode-locked oscillator which is an extension of eXtreme Chirped Pulse Amplification (XCPA) is investigated. An eXtreme Chirped Pulse Oscillator (XCPO) implemented with a Theta cavity also based on a semiconductor gain is presented for generating more than 30ns frequency-swept pulses with more than 100pJ of pulse energy and 3.6ps compressed pulses directly from the oscillator. The XCPO shows the two distinct characteristics which are the scalability of the output energy and the mode-locked spectrum with respect to repetition rate. The laser cavity design allows for low repetition rate operation <100MHz. The cavity significantly reduces nonlinear carrier dynamics, integrated self phase modulation (SPM), and fast gain recovery in a Semiconductor optical Amplifier (SOA). Secondly, a functional device, called a Grating Coupled Surface Emitting Laser (GCSEL) is investigated. For the first time, passive and hybrid mode-locking of a GCSEL is achieved by using saturable absorption in the passive section of GCSEL. To verify the present limitation of the GCSEL for passive and hybrid mode-locking, a dispersion matched cavity is explored. In addition, a Grating Coupled surface emitting Semiconductor Optical Amplifier (GCSOA) is also investigated to achieve high energy pulse. An energy extraction experiment for GCSOA using stretched pulses generated from the colliding pulse semiconductor mode-locked laser via a chirped fiber bragg grating, which exploits the XCPA advantages is also demonstrated. Finally, passive optical cavity amplification using an enhancement cavity is presented. In order to achieve the interferometric stability, the Hänsch-Couillaud Method is employed to stabilize the passive optical cavity. The astigmatism-free optical cavity employing an acousto-optic modulator (AOM) is designed and demonstrated. In the passive optical cavity, a 7.2 of amplification factor is achieved with a 50 KHz dumping rate.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002093, ucf:47555
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002093
-
-
Title
-
FEMTOSECOND LASER WRITTEN VOLUMETRIC DIFFRACTIVE OPTICAL ELEMENTS AND THEIR APPLICATIONS.
-
Creator
-
Choi, Jiyeon, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
Since the first demonstration of femtosecond laser written waveguides in 1996, femtosecond laser direct writing (FLDW) has been providing a versatile means to fabricate embedded 3-D microstructures in transparent materials. The key mechanisms are nonlinear absorption processes that occur when a laser beam is tightly focused into a material and the intensity of the focused beam reaches the range creating enough free electrons to induce structural modification. One of the most useful features...
Show moreSince the first demonstration of femtosecond laser written waveguides in 1996, femtosecond laser direct writing (FLDW) has been providing a versatile means to fabricate embedded 3-D microstructures in transparent materials. The key mechanisms are nonlinear absorption processes that occur when a laser beam is tightly focused into a material and the intensity of the focused beam reaches the range creating enough free electrons to induce structural modification. One of the most useful features that can be exploited in fabricating photonic structures is the refractive index change which results from the localized energy deposition. The laser processing system for FLDW can be realized as a compact, desktop station, implemented by a laser source, a 3-D stage and focusing optics. Thus, FLDW can be readily adopted for the fabrication of the photonic devices. For instance, it has been widely employed in various areas of photonic device fabrication such as active and passive waveguides, couplers, gratings, opto-fluidics and similar applications. This dissertation describes the use of FLDW towards the fabrication of custom designed diffractive optical elements (DOE's). These are important micro-optical elements that are building blocks in integrated optical devices including on-chip sensors and systems. The fabrication and characterization of laser direct written DOEs in different glass materials is investigated. The design and performance of a range of DOE's is described, especially, laser-written embedded Fresnel zone plates and linear gratings. Their diffractive efficiency as a function of the fabrication parameters is discussed and an optimized fabrication process is realized. The potential of the micro-DOEs and their integration shown in this dissertation will impact on the fabrication of future on-chip devices involving customized DOEs that will serve great flexibility and multi-functional capability on sensing, imaging and beam shaping.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002958, ucf:47984
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002958
-
-
Title
-
Generation and Characterization of Isolated Attosecond Pulse in the Soft X-ray Regime.
-
Creator
-
Li, Jie, Chang, Zenghu, Delfyett, Peter, Vanstryland, Eric, Chen, Bo, University of Central Florida
-
Abstract / Description
-
The observation of any atomic and molecular dynamics requires a probe that has a timescale comparable to the dynamics itself. Ever since the invention of laser, the temporal duration of the laser pulse has been incrementally reduced from several nanoseconds to just attoseconds. Picosecond and femtosecond laser pulses have been widely used to study molecular rotation and vibration. In 2001, the first single isolated attosecond pulse (1 attosecond = 10^-18 seconds.) was demonstrated. Since this...
Show moreThe observation of any atomic and molecular dynamics requires a probe that has a timescale comparable to the dynamics itself. Ever since the invention of laser, the temporal duration of the laser pulse has been incrementally reduced from several nanoseconds to just attoseconds. Picosecond and femtosecond laser pulses have been widely used to study molecular rotation and vibration. In 2001, the first single isolated attosecond pulse (1 attosecond = 10^-18 seconds.) was demonstrated. Since this breakthrough, (")attoscience(") has become a hot topic in ultrafast physics. Attosecond pulses typically have span between EUV to X-ray photon energies and sub-femtosecond pulse duration. It becomes an ideal tool for experimentalists to study ultrafast electron dynamics in atoms, molecules and condensed matter. The conventional scheme for generating attosecond pulses is focusing an intense femtosecond laser pulse into inert gases. The bound electrons are ionized into continuum through tunneling ionization under the strong electrical field. After ionization, the free electron will be accelerated by the laser field away from the parent ion and then recombined with its parent ion and releases its kinetic energy as a photon burst that lasts for a few hundred attoseconds. According to the classical (")three-step model("), high order harmonic will have a higher cutoff photon energy when driven by a longer wavelength laser field. Compared to Ti:sapphire lasers center at a wavelength of 800 nm, an optical parametric amplifier could offer a broad bandwidth at infrared range, which could support few cycle pulses for driving high harmonic generation in the X-ray spectrum range. In this work, an optical parametric chirped-pulse amplification system was developed to deliver CEP-stable 3-mJ, 12-fs pulses centered at 1.7 micron. We implement a chirped-pump technique to phase match the board parametric amplification bandwidth with high conversion efficiency. Using such a laser source, isolated attosecond pulses with photon exceeding 300 eV are achieved by applying the polarization gating technique at 1.7 micron. The intrinsic positive chirp of the attosecond pulses is measured by the attosecond streak camera and retrieved with our PROOF technique. Sn metal filters with negative dispersion were chosen to compensate the intrinsic attochirp. As a result, isolated 53-attosecond soft x-ray pulses are achieved. Such water window attosecond source will be a powerful tool for studying charge distribution/migration in bio-molecules and will bring opportunities to study high field physics or attochemistry.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007040, ucf:52007
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007040
-
-
Title
-
Cryogenic performance projections for ultra-small oxide-free vertical-cavity surface-emitting lasers.
-
Creator
-
Bayat, Mina, Deppe, Dennis, Li, Guifang, Schoenfeld, Winston, Lyakh, Arkadiy, University of Central Florida
-
Abstract / Description
-
Small-sized vertical-cavity surface-emitting laser (VCSEL) may offer very low power consumption along with high reliability for cryogenic data transfer. Cryogenic data transfer has application in supercomputers and superconducting for efficient computing and also focal plane array cameras operating at 77 K, and at the lower temperature of 4 K for data extraction from superconducting circuits. A theoretical analysis is presented for 77 K and 4 K operation based on small cavity, oxide-free...
Show moreSmall-sized vertical-cavity surface-emitting laser (VCSEL) may offer very low power consumption along with high reliability for cryogenic data transfer. Cryogenic data transfer has application in supercomputers and superconducting for efficient computing and also focal plane array cameras operating at 77 K, and at the lower temperature of 4 K for data extraction from superconducting circuits. A theoretical analysis is presented for 77 K and 4 K operation based on small cavity, oxide-free VCSEL sizes of 2 to 6 (&)#181;m, that have been shown to operate efficiently at room temperature. Temperature dependent operation for optimally-designed VCSELs are studied by calculating the response of the laser at 77 K and 4 K to estimate their bias conditions needed to reach modulation speed for cryogenic optical links. The temperature influence is to decrease threshold for reducing temperature, and to increase differential gain for reducing temperature. The two effects predict very low bias currents for small cavity VCSELs to reach needed data speed for cryogenic optical data links. Projections are made for different cavity structures (half-wave cavity and full-wave cavity) shown that half-wave cavity structure has better performance. Changing the number of top-mirror pairs has also been studied to determine how cavity design impacts speed and bit energy. Our design and performance predictions paves the way for realizing highly efficient, ultra-small VCSEL arrays with applications in optical interconnects.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007782, ucf:52330
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007782
-
-
Title
-
LOW NOISE AND LOW REPETITION RATE SEMICONDUCTOR-BASED MODE-LOCKED LASERS.
-
Creator
-
Mnaridis, Dimitrios, Delfyett, Peter, University of Central Florida
-
Abstract / Description
-
The topic of this dissertation is the development of low repetition rate and low noise semiconductor-based laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the...
Show moreThe topic of this dissertation is the development of low repetition rate and low noise semiconductor-based laser sources with a focus on linearly chirped pulse laser sources. In the past decade chirped optical pulses have found a plethora of applications such as photonic analog-to-digital conversion, optical coherence tomography, laser ranging, etc. This dissertation analyzes the aforementioned applications of linearly chirped pulses and their technical requirements, as well as the performance of previously demonstrated chirped pulse laser sources. Moreover, the focus is shifted to a specific application of the linearly chirped pulses, time-stretched photonic analog-to-digital conversion (TS ADC). The challenges of surpassing the speeds of current electronic converters are discussed, while the need for low noise linearly chirped pulse lasers becomes apparent for the realization of TS ADC. The experimental research addresses the topic of low noise chirped pulse generation in three distinct ways. First, a chirped pulse (Theta) laser with an intra-cavity Fabry-Perot etalon and a long-term referencing mechanism is developed that results in the reduction of the pulse-to-pulse energy noise. Noise suppression of >15 times is demonstrated. Moreover, an optical frequency comb with spacing equal to the repetition rate (H100 MHz) is generated using the etalon, resulting in the first reported demonstration of a system operating in the sub-GHz regime based on semiconductor gain. The path for the development of the Theta laser was laid by the precise characterization of the etalon used in this laser cavity design. A narrow linewidth laser is used in conjunction with an acousto-optic modulator externally swept for measuring the etalon's free spectral range with a sub-Hz precision, or 10 parts per billion. Furthermore, the measurement of the etalon long-term drift and birefringence lead to the development of a modified intra-cavity Hansch-Couillaud locking mechanism for the Theta laser. Moreover, an external feed-forward system was demonstrated that aimed at increasing the temporal/spectral uniformity of the optical pulses. A complete characterization of the system is demonstrated. On a different series of experiments, the pulses emitted by an ultra-low noise but high repetition rate mode-locked laser were demultiplexed resulting in a low repetition rate pulse train. Experimental investigation of the noise properties of the laser proved that they are preserved during the demultiplexing process. The noise of the electrical gate used in this experiment is also investigated which led into the development of a more profound understanding of the electrical noise of periodical pulses and a mechanism of measuring their noise. The appendices in this dissertation provide additional material used for the realization of the main research focus of the dissertation. Measurements of the group delay of the etalon used in the Theta laser are presented in order to demonstrate the limiting factors for the development of this cavity design. The description of a balancing routine is presented, that was used for expanding the dynamic range of intra-cavity active variable delay. At last, the appendix presents the calculations regarding the contribution of various parameters in the limitations of analog-to-digital conversion.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003874, ucf:48741
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003874
-
-
Title
-
Plasma Dynamics of Laser Filaments.
-
Creator
-
Reyes, Danielle, Richardson, Martin, Gaume, Romain, Chini, Michael, University of Central Florida
-
Abstract / Description
-
Laser filamentation is a complex phenomenon occurring for pulses with peak power above a critical value. A filament is a dynamic self-guided structure characterized by several unique qualities, which include a beam with a high-intensity core surrounded by an energy reservoir, a weakly ionized plasma channel, and supercontinuum generation. Several of the proposed applications for filamentation utilize the plasma channel, such as for assisted electric discharge and microwave guiding. However,...
Show moreLaser filamentation is a complex phenomenon occurring for pulses with peak power above a critical value. A filament is a dynamic self-guided structure characterized by several unique qualities, which include a beam with a high-intensity core surrounded by an energy reservoir, a weakly ionized plasma channel, and supercontinuum generation. Several of the proposed applications for filamentation utilize the plasma channel, such as for assisted electric discharge and microwave guiding. However, filament properties are highly influenced by the physical conditions under which they are formed. A host of studies have been conducted to further characterize filaments, but much work still remains in order to understand their complex behavior. This work presents an accurate and direct measurement of the electron density based on an interferometric technique. The impact of different initial parameters on filament spatio-temporal dynamics in air is investigated, concentrating primarily on their influence on the plasma. For comparison of the experiment with theory, the plasma decay is modeled by a system of kinetic equations that takes into account three-body and dissociative electron recombination reactions.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006646, ucf:51222
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006646
Pages