Current Search: materialism (x)
View All Items
Pages
- Title
- Predictive Modeling of Functional Materials for Catalytic and Sensor Applications.
- Creator
-
Rawal, Takat, Rahman, Talat, Chang, Zenghu, Leuenberger, Michael, Zou, Shengli, University of Central Florida
- Abstract / Description
-
The research conducted in my dissertation focuses on theoretical and computational studies of the electronic and geometrical structures, and the catalytic and optical properties of functional materials in the form of nano-structures, extended surfaces, two-dimensional systems and hybrid structures. The fundamental aspect of my research is to predict nanomaterial properties through ab-initio calculations using methods such as quantum mechanical density functional theory (DFT) and kinetic Monte...
Show moreThe research conducted in my dissertation focuses on theoretical and computational studies of the electronic and geometrical structures, and the catalytic and optical properties of functional materials in the form of nano-structures, extended surfaces, two-dimensional systems and hybrid structures. The fundamental aspect of my research is to predict nanomaterial properties through ab-initio calculations using methods such as quantum mechanical density functional theory (DFT) and kinetic Monte Carlo simulation, which help rationalize experimental observations, and ultimately lead to the rational design of materials for the electronic and energy-related applications. Focusing on the popular single-layer MoS2, I first show how its hybrid structure with 29-atom transition metal nanoparticles (M29 where M=Cu, Ag, and Au) can lead to composite catalysts suitable for oxidation reactions. Interestingly, the effect is found to be most pronounced for Au29 when MoS2 is defect-laden (S vacancy row). Second, I show that defect-laden MoS2 can be functionalized either by deposited Au nanoparticles or when supported on Cu(111) to serve as a cost-effective catalyst for methanol synthesis via CO hydrogenation reactions. The charge transfer and electronic structural changes in these sub systems lead to the presence of 'frontier' states near the Fermi level, making the systems catalytically active. Next, in the emerging area of single metal atom catalysis, I provide rationale for the viability of single Pd sites stabilized on ZnO(101 ?0) as the active sites for methanol partial oxidation, an important reaction for the production of H2. We trace its excellent activity to the modified electronic structure of the single Pd site as well as neighboring Zn cationic sites. With the DFT-calculated activation energy barriers for a large set of reactions, we perform ab-initio kMC simulations to determine the selectivity of the products (CO2 and H2). These findings offer an opportunity for maximizing the efficiency of precious metal atoms, and optimizing their activity and selectivity (for desired products). In related work on extended surfaces while trying to explain the Scanning Tunneling Microscopy images observed by our experimental collaborators, I discovered a new mechanism involved in the process of Ag vacancy formation on Ag(110), in the presence of O atoms which leads to the reconstruction and eventually oxidation of the Ag surface. In a similar vein, I was able to propose a mechanism for the orange photoluminescence (PL), observed by our experimental collaborators, of a coupled system of benzylpiperazine (BZP) molecule and iodine on a copper surface. Our results show that the adsorbed BZP and iodine play complimentary roles in producing the PL in the visible range. Upon photo-excitation of the BZP-I/CuI(111) system, excited electrons are transferred into the conduction band (CB) of CuI, and holes are trapped by the adatoms. The relaxation of holes into BZP HOMO is facilitated by its realignment. Relaxed holes subsequently recombine with excited electrons in the CB of the CuI film, thus producing a luminescence peak at ~2.1 eV. These results can be useful for forensic applications in detecting illicit substances.
Show less - Date Issued
- 2017
- Identifier
- CFE0006783, ucf:51813
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006783
- Title
- Digital Dissonance: Horror Cultures in the Age of Convergent Technologies.
- Creator
-
Powell, Daniel, McDaniel, Rudy, Campbell, James, Brenckle, Martha, Arnzen, Michael, University of Central Florida
- Abstract / Description
-
The first two decades of the new millennium have witnessed an abundance of change in the areas of textual production, digital communication, and our collective engagement with the Internet. This study explores these changes, which have yielded both positive and negative cultural and developmental outcomes, as products of digital dissonance. Dissonance is characterized by the disruptive consequences inherent in technology's incursion into the print publication cultures of the twentieth century...
Show moreThe first two decades of the new millennium have witnessed an abundance of change in the areas of textual production, digital communication, and our collective engagement with the Internet. This study explores these changes, which have yielded both positive and negative cultural and developmental outcomes, as products of digital dissonance. Dissonance is characterized by the disruptive consequences inherent in technology's incursion into the print publication cultures of the twentieth century, the explosion in social-media interaction that is changing the complexion of human contact, and our expanding reliance on the World Wide Web for negotiating commerce, culture, and communication.This study explores digital dissonance through the prism of an emerging literary subgenre called technohorror. Artists working in the area of technohorror are creating works that leverage the qualities of plausibility, mundanity, and surprise to tell important stories about how technology is altering the human experience in the twenty-first century. This study explores such subjects as paradigmatic changes in textual production methods, dynamic authorial hybridity, digital materiality in folklore studies, posthumanism, transhumanism, cognitive diminution, and physical degeneration as explored in works of technohorror.The work's rhetorical architecture includes elements of both theoretical and qualitative research. This project expands on City University of New York philosophy professor No(&)#235;l Carroll's definition of art-horror in developing a formal explanation of technohorror and then exploring that literary subgenre through the analysis of a series of contemporary texts and industry-related trends. The study also contains original interviews with active scholars, artists, editors, and librarians in the horror field to gain a variety of perspectives on these complicated subjects.
Show less - Date Issued
- 2017
- Identifier
- CFE0006642, ucf:51231
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006642
- Title
- A multi-scale approach to study Solid Oxide Fuel Cells: from Mechanical Properties and Crystal Structure of the Cell's Materials to the Development of an Interactive and Interconnected Educational Tool.
- Creator
-
Aman, Amjad, Orlovskaya, Nina, Xu, Yunjun, Das, Tuhin, University of Central Florida
- Abstract / Description
-
Solid Oxide Fuel Cells are energy conversion devices that convert chemical energy of a fuel directly into electrical energy. They are known for being fuel-flexible, have minimal harmful emissions, ideal for combined heat and power applications, highly energy-efficient when combined with gas or steam turbines. The current challenges facing the widespread adoption these fuel cells include cost reduction, long-term testing of fully integrated systems, improving the fuel cell stack and system...
Show moreSolid Oxide Fuel Cells are energy conversion devices that convert chemical energy of a fuel directly into electrical energy. They are known for being fuel-flexible, have minimal harmful emissions, ideal for combined heat and power applications, highly energy-efficient when combined with gas or steam turbines. The current challenges facing the widespread adoption these fuel cells include cost reduction, long-term testing of fully integrated systems, improving the fuel cell stack and system performance, and studies related to reliability, robustness and durability. The goal of this dissertation is to further the understanding of the mechanical properties and crystal structure of materials used in the cathode and electrolyte of solid oxide fuel cells, as well as to report on the development of a supplementary educational tool that could be used in course related to fuel cells. The first part of the dissertation relates to the study of LaCoO3 based perovskites that are used as cathode material in solid oxide fuel cells and in other energy-related applications. In-situ neutron diffraction of LaCoO3 perovskite during uniaxial compression was carried out to study crystal structure evolution and texture development. In this study, LaCoO3 was subjected to two cycles of uniaxial loading and unloading with the maximum stress value being 700-900 MPa. The in-situ neutron diffraction revealed the dynamic crystallographic changes occurring which is responsible for the non-linear ferroelastic deformation and the appearance of hysteresis in LaCoO3. At the end of the first cycle, irreversible strain was observed even after the load was removed, which is caused by non-recoverable domain reorientation and texture development. At the end of the second cycle, however, no irreversible strain was observed as domain reorientation seemed fully recovered. Elastic constants were calculated and Young's modulus was estimated for LaCoO3 single crystals oriented along different crystallographic directions. The high temperature mechanical behavior study of LaCoO3 based perovskites is also of prime importance as solid oxide fuel cells operate at high temperatures. Incidentally, it was observed that as opposed to the behavior of most materials, LaCoO3 exhibits stiffening between 700 oC to 900 oC, with the Young's modulus going from a value of ~76 GPa at room temperature to ~120 GPa at 900 oC. In-situ neutron diffraction, XRD and Raman spectroscopy were used to study structural changes occurring in the material as it was heated. The results from these experiments will be discussed.The next portion of the dissertation will focus on electrolytes. Numerical simulation was carried out in order to predict the non-linear load-stress relationship and estimation of biaxial flexure strength in layered electrolytes, during ring-on-ring mechanical testing.Finally, the development of an interactive and inter-connected educational software is presented that could serve as a supplementary tool to teach fuel cell related topics.
Show less - Date Issued
- 2016
- Identifier
- CFE0006436, ucf:51467
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006436
- Title
- Catalytically Enhanced Heterogeneous Combustion of methane.
- Creator
-
Terracciano, Anthony, Orlovskaya, Nina, Vasu Sumathi, Subith, Chow, Louis, Kassab, Alain, University of Central Florida
- Abstract / Description
-
Heterogeneous combustion is an advanced internal combustion technique, which enables heat recuperation within the flame by utilizing a highly porous ceramic media as a regenerator. Heat released within the gas phase convectively transfers to the solid media. This heat within the solid media then travels towards the inlet, enabling reactant preheating. Such heat redistribution enables stable burning of both ultra-lean fuel/air mixtures, forming a more diffuse flame through the combustion...
Show moreHeterogeneous combustion is an advanced internal combustion technique, which enables heat recuperation within the flame by utilizing a highly porous ceramic media as a regenerator. Heat released within the gas phase convectively transfers to the solid media. This heat within the solid media then travels towards the inlet, enabling reactant preheating. Such heat redistribution enables stable burning of both ultra-lean fuel/air mixtures, forming a more diffuse flame through the combustion chamber, and results in reduced pollutant formation. To further enhance heterogeneous combustion, the ceramic media can be coated with catalytically active materials, which facilitates surface based chemical reactions that could occur in parallel with gas phase reactions.Within this work, a flow stabilized heterogeneous combustor was designed and developed consisting of a reactant delivery nozzle, combustion chamber, and external instrumentation. The reactant delivery nozzle enables the combustor to operate on mixtures of air, liquid fuel, and gaseous fuel. Although this combustor has high fuel flexibility, only gaseous methane was used within the presented experiments. Within the reactant delivery nozzle, reactants flow through a tube mixer, and a homogeneous gaseous mixture is delivered to the combustion chamber. ?-alumina (?-Al2O3), magnesia stabilized zirconia (MgO-ZrO2), or silicon carbide (SiC) was used as the material for the porous media. Measurement techniques which were incorporated in the combustor include an array of axially mounted thermocouples, an external microphone, an external CCD camera, and a gas chromatograph with thermal conductivity detector which enable temperature measurements, acoustic spectroscopy, characterization of thermal radiative emissions, and composition analysis of exhaust gasses, respectively. Before evaluation of the various solid media in the combustion chamber the substrates and catalysts were characterized using X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectroscopy. MgO-ZrO2 porous media was found to outperform both ?-Al2O3 and SiC matrices, as it was established that higher temperatures for a given equivalence ratio were achieved when the flame was contained within a MgO-ZrO2 matrix. This was explained by the presence of oxygen vacancies within the MgO doped ZrO2 fluorite lattice which facilitated catalytic reactions. Several catalyst compositions were evaluated to promote combustion within a MgO-ZrO2 matrix even further.Catalysts such as: Pd enhanced WC, ZrB2, Ce0.80Gd0.20O1.90, LaCoO3, La0.80Ca0.20CoO3, La0.75Sr0.25Fe0.95Ru0.05O3, and La0.75Sr0.25Cr0.95Ru0.05O3; were evaluated under lean fuel/air mixtures. LaCoO3 outperformed all other catalysts, by enabling the highest temperatures within the combustion chamber, followed by Ce0.80Gd0.20O1.90. Both LaCoO3 and Ce0.80Gd0.20O1.90 enabled a flame to exist at ?=0.45(&)#177;0.02, however LaCoO3 caused the flame to be much more stable. Furthermore, it was discovered that the coating of MgO-ZrO2 with LaCoO3 significantly enhanced the total emissive power of the combustion chamber. In this work as acoustic spectroscopy was used to characterize heterogeneous combustion for the first time. It was found that there is a dependence of acoustic emission n the equivalence ratio and flame position regardless of media and catalyst combination. It was also found that when different catalysts were used, the acoustic tones produced during combustion at fixed reactant flow rates were distinct
Show less - Date Issued
- 2016
- Identifier
- CFE0006508, ucf:51364
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006508
- Title
- The Impact of Elementary Mathematics Workshops on Mathematics Knowledge for Parenting (MKP) and Beliefs About Learning Mathematics.
- Creator
-
Eisenreich, Heidi, Dixon, Juli, Ortiz, Enrique, Andreasen, Janet, Brooks, Lisa, Hahs-Vaughn, Debbie, University of Central Florida
- Abstract / Description
-
The purpose of this study was to investigate the extent to which parents of first, second, and third grade students who attended a two-day workshop on mathematics strategies differed on average and over time, as compared to parents who did not attend the workshops. The following areas were measured: mathematics content knowledge, beliefs about learning mathematics, ability to identify correct student responses regarding mathematics, ability to identify student errors in solving mathematics...
Show moreThe purpose of this study was to investigate the extent to which parents of first, second, and third grade students who attended a two-day workshop on mathematics strategies differed on average and over time, as compared to parents who did not attend the workshops. The following areas were measured: mathematics content knowledge, beliefs about learning mathematics, ability to identify correct student responses regarding mathematics, ability to identify student errors in solving mathematics problems, methods used to solve problems, and comfort level with manipulatives.
Show less - Date Issued
- 2016
- Identifier
- CFE0006101, ucf:52877
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006101
- Title
- THE APPLICATION OF TWO-PHOTON ABSORBING PROBES IN LYSOSOMAL, ZINC ION SENSING AND FOLATE RECEPTOR-TARGETED BIOIMAGING.
- Creator
-
WANG, XUHUA, Belfield, Kevin D., University of Central Florida
- Abstract / Description
-
Two-photon fluorescence microscopy (2PFM) has become a powerful technique for bioimaging in non-invasive cancer diagnosis and also investigating the mechanization and original of a variety of diseases by tracking various biological processes. Because the fluorescence emission by two photon absorbing (2PA) is directly proportional to the square of the intensity of excitation light, this intrinsic property of 2PA provides 2PFM great advantages over traditional one-photon fluorescence microscopy...
Show moreTwo-photon fluorescence microscopy (2PFM) has become a powerful technique for bioimaging in non-invasive cancer diagnosis and also investigating the mechanization and original of a variety of diseases by tracking various biological processes. Because the fluorescence emission by two photon absorbing (2PA) is directly proportional to the square of the intensity of excitation light, this intrinsic property of 2PA provides 2PFM great advantages over traditional one-photon fluorescence microscopy (1PFM), including high 3D spatial localization, less photodamage and interference from biological tissue because of using longer wavelength excitation (700-1300 nm). However, most 2PA probes are hydrophobic and their photostabilities are questionable, severely limiting their biological and medical applications. In addition, probes with significant specificity for certain organelles for tracking cellular processes or metal ions for monitoring neural transmission are somewhat rare. Moreover, it is also very significant to deliver the probes to specific disease sites for early cancer diagnosis. In order to increase the water solubility of probes, polyethylene glycol (PEG) was introduced to a fluorene-based 2PA probe LT1 for lysosomal 2PFM cell imaging. The 2PFM bioimaging application of the novel two-photon absorbing fluorene derivative LT1, selective for the lysosomes of HCT 116 cancer cells is described in Chapter II. Linear and nonlinear photophysical and photochemical properties of the probe were investigated to evaluate the potential of the probe for 2PFM lysosomal imaging. After the investigation of the cytotoxicity of this new probe, colocalization studies of the probe with commercial lysosomal probe Lysotracker Red in HCT 116 cells were conducted. A high colocalization coefficient (0.96) was achieved and demonstrated the specific localization of the probe in lysosomes. A figure of merit, FM, was introduced by which all fluorescent probes for 2PFM can be compared. LT1 was demonstrated to have a number of properties that far exceed those of commercial lysotracker probes, including much higher 2PA cross sections, good fluorescence quantum yield, and, importantly, high photostability, all resulting in a superior figure of merit. Consequently, 2PFM was used to demonstrate lysosomal tracking with LT1. In addition to lysosomes, it is also very significant to investigate the physiological roles of free metal ions in biological processes, especially Zn2+, because Zn2+ normally serves either as the catalytic elements in enzymatic activity centers or as structural elements in enzymes and transcription factors. However, biocompatible and effective Zn2+ probes for 2PFM bioimaging are infrequent. In Chapter III, 2PFM bioimaging with a hydrophilic 2PA Zn2+ sensing fluorescent probe, bis(1,2,3-triazolyl)fluorene derivative, is described. 2PFM bioimaging of the probe in living HeLa cancer cells was demonstrated. The results revealed a significant fluorescence increase upon introduction of Zn2+ into the cancer cells, and a reversible Zn2+ binding to the probe was also demonstrated, providing a robust probe for two-photon fluorescence zinc ion sensing. Early cancer diagnosis is another critical application for 2PFM, but there are still huge challenges for this new technique in clinical areas. Most 2PA probes with large two-photon absorbing cross sections and fluorescence quantum efficiency are synthetically more accessible in hydrophobic forms. In order to increase the efficiency of the probes and minimize the effect of the probe on the human body, delivery of the probe specifically to cancer sites is desired. The synthesis and characterization of narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, are reported in Chapter IV. The surface of the SiNPs was functionalized with folic acid to specifically deliver the probe to folate receptor (FR) over-expressing HeLa cells, making these folate 2PA dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing HeLa cells demonstrated specific cellular uptake of the functionalized nanoparticles. However, when the concentration of the dye in SiNPs increased for higher signal output, the fluorescence quantum efficiency of a probe normally decreases because of self-quenching. In Chapter V, a near-infrared (NIR) emitting probe is reported to overcome this limitation through both aggregate-enhanced fluorescence emission and aggregate enhanced two-photon absorption. The dye was encapsulated in SiNPs and the surface of the nanoparticles was functionalized with PEG followed by a folic acid derivative to specifically target folate receptors. NIR emission is important for deep tissue imaging. In vitro studies using HeLa cells that upregulate folate receptors indicated specific cellular uptake of the folic acid functionalized SiNP nanoprobe. Meanwhile, the probe was also investigated for live animal imaging by employing mice bearing HeLa tumors for in vivo studies. Ex vivo 2PFM tumor imaging was then conducted to achieve high quality 3D thick tissue tumor images.
Show less - Date Issued
- 2011
- Identifier
- CFE0003640, ucf:48891
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003640
- Title
- The Influence of Alloying Additions on Diffusion and Strengthening of Magnesium.
- Creator
-
Kammerer, Catherine, Sohn, Yongho, Coffey, Kevin, Challapalli, Suryanarayana, Gordon, Ali, University of Central Florida
- Abstract / Description
-
Magnesium alloys are being developed as advanced materials for structural applications where reduced weight is a primary motivator. Alloying can enhance the properties of magnesium without significantly affecting its density. Essential to alloy development, inclusive of processing parameters, is knowledge of thermodynamic, kinetic, and mechanical behavior of the alloy and its constituents. Appreciable progress has been made through conventional development processes, but to accelerate...
Show moreMagnesium alloys are being developed as advanced materials for structural applications where reduced weight is a primary motivator. Alloying can enhance the properties of magnesium without significantly affecting its density. Essential to alloy development, inclusive of processing parameters, is knowledge of thermodynamic, kinetic, and mechanical behavior of the alloy and its constituents. Appreciable progress has been made through conventional development processes, but to accelerate development of suitable wrought Mg alloys, an integrated Materials Genomic approach must be taken where thermodynamics and diffusion kinetic parameters form the basis of alloy design, process development, and properties-driven applications.The objective of this research effort is twofold: first, to codify the relationship between diffusion behavior, crystal structure, and mechanical properties; second, to provide fundamental data for the purpose of wrought Mg alloy development. Together, the principal deliverable of this work is an advanced understanding of Mg systems. To that end, the objective is accomplished through an aggregate of studies. The solid-to-solid diffusion bonding technique is used to fabricate combinatorial samples of Mg-Al-Zn ternary and Mg-Al, Mg-Zn, Mg-Y, Mg-Gd, and Mg-Nd binary systems. The combinatorial samples are subjected to structural and compositional characterization via Scanning Electron Microscopy with X-ray Energy Dispersive Spectroscopy, Electron Probe Microanalysis, and analytical Transmission Electron Microscopy. Interdiffusion in binary Mg systems is determined by Sauer-Freise and Boltzmann-Matano methods. Kirkaldy's extension of the Boltzmann-Matano method, on the basis of Onsager's formalism, is employed to quantify the main- and cross-interdiffusion coefficients in ternary Mg solid solutions. Impurity diffusion coefficients are determined by way of the Hall method. The intermetallic compounds and solid solutions formed during diffusion bonding of the combinatorial samples are subjected to nanoindentation tests, and the nominal and compositionally dependent mechanical properties are extracted by the Oliver-Pharr method.In addition to bolstering the scantly available experimental data and first-principles computations, this work delivers several original contributions to the state of Mg alloy knowledge. The influence of Zn concentration on Al impurity diffusion in binary Mg(Zn) solid solution is quantified to impact both the pre-exponential factor and activation energy. The main- and cross-interdiffusion coefficients in the ternary Mg solid solution of Mg-Al-Zn are reported wherein the interdiffusion of Zn is shown to strongly influence the interdiffusion of Mg and Al. A critical examination of rare earth element additions to Mg is reported, and a new phase in thermodynamic equilibrium with Mg-solid solution is identified in the Mg-Gd binary system. It is also demonstrated that Mg atoms move faster than Y atoms. For the first time the mechanical properties of intermetallic compounds in several binary Mg systems are quantified in terms of hardness and elastic modulus, and the influence of solute concentration on solid solution strengthening in binary Mg alloys is reported. The most significant and efficient solid solution strengthening is achieved by alloying Mg with Gd. The Mg-Nd and Mg-Gd intermetallic compounds exhibited better room temperature creep resistance than intermetallic compounds of Mg-Al. The correlation between the concentration dependence of mechanical properties and atomic diffusion is deliberated in terms of electronic nature of the atomic structure.
Show less - Date Issued
- 2015
- Identifier
- CFE0005815, ucf:50043
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005815
- Title
- INVESTIGATION OF PS-PVD AND EB-PVD THERMAL BARRIER COATINGS OVER LIFETIME USING SYNCHROTRON X-RAY DIFFRACTION.
- Creator
-
Northam, Matthew, Raghavan, Seetha, Ghosh, Ranajay, Vaidyanathan, Raj, University of Central Florida
- Abstract / Description
-
Extreme operating temperatures within the turbine section of jet engines require sophisticated methods of cooling and material protection. Thermal barrier coatings (TBCs) achieve this through a ceramic coating applied to a substrate material (nickel-based superalloy). Electron-beam physical vapor deposition (EB-PVD) is the industry standard coating used on jet engines. By tailoring the microstructure of an emerging deposition method, Plasma-spray physical vapor deposition (PS-PVD), similar...
Show moreExtreme operating temperatures within the turbine section of jet engines require sophisticated methods of cooling and material protection. Thermal barrier coatings (TBCs) achieve this through a ceramic coating applied to a substrate material (nickel-based superalloy). Electron-beam physical vapor deposition (EB-PVD) is the industry standard coating used on jet engines. By tailoring the microstructure of an emerging deposition method, Plasma-spray physical vapor deposition (PS-PVD), similar microstructures to that of EB-PVD coatings can be fabricated, allowing the benefits of strain tolerance to be obtained while improving coating deposition times. This work investigates the strain through depth of uncycled and cycled samples using these coating techniques with synchrotron X-ray diffraction (XRD). In the TGO, room temperature XRD measurements indicated samples of both deposition methods showed similar in-plane compressive stresses after 300 and 600 thermal cycles. In-situ XRD measurements indicated similar high-temperature in-plane and out-of-plane stress in the TGO and no spallation after 600 thermal cycles for both coatings. Tensile in-plane residual stresses were found in the YSZ uncycled PS-PVD samples, similar to APS coatings. PS-PVD samples showed in most cases, higher compressive residual in-plane stress at the YSZ/TGO interface. These results provide valuable insight for optimizing the PS-PVD processing parameters to obtain strain compliance similar to that of EB-PVD. Additionally, external cooling methods used for thermal management in jet engine turbines were investigated. In this work, an additively manufactured lattice structure providing transpiration cooling holes is designed and residual strains are measured within an AM transpiration cooling sample using XRD. Strains within the lattice structure were found to have greater variation than that of the AM solid wall. These results provide valuable insight into the viability of implementing an AM lattice structure in turbine blades for the use of transpiration cooling.
Show less - Date Issued
- 2019
- Identifier
- CFE0007844, ucf:52830
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007844
- Title
- Characterization of Anisotropic Mechanical Performance of As-Built Additively Manufactured Metals.
- Creator
-
Siddiqui, Sanna, Gordon, Ali, Raghavan, Seetha, Bai, Yuanli, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
Additive manufacturing (AM) technologies use a 3D Computer Aided Design (CAD) model to develop a component through a deposition and fusion layer process, allowing for rapid design and geometric flexibility of metal components, for use in the aerospace, energy and biomedical industries. Challenges exist with additive manufacturing that limits its replacement of conventional manufacturing techniques, most especially a comprehensive understanding of the anisotropic behavior of these materials...
Show moreAdditive manufacturing (AM) technologies use a 3D Computer Aided Design (CAD) model to develop a component through a deposition and fusion layer process, allowing for rapid design and geometric flexibility of metal components, for use in the aerospace, energy and biomedical industries. Challenges exist with additive manufacturing that limits its replacement of conventional manufacturing techniques, most especially a comprehensive understanding of the anisotropic behavior of these materials and how it is reflected in observed tensile, torsional and fatigue mechanical responses. As such, there is a need to understand how the build orientation of as-built additively manufactured metals, affects mechanical performance (e.g. monotonic and cyclic behavior, cyclically hardening/softening behavior, plasticity effects on fatigue life etc.); and to use constitutive modeling to both support experimental findings, and provide approximations of expected behavior (e.g. failure surfaces, monotonic and cyclic response, correlations between tensile and fatigue properties), for orientations and experiments not tested, due to the expensive cost associated with AM. A comprehensive framework has been developed to characterize the anisotropic behavior of as-built additively manufactured metals (i.e. Stainless Steel GP1 (SS GP1), similar in chemical composition to Stainless Steel 17-4PH), through a series of mechanical testing, microscopic evaluation and constitutive modeling, which were used to identify a reduced specimen size for characterizing these materials. An analysis of the torsional response of additively manufactured Inconel 718 has been performed to assess the impact of build orientation and as-built conditions on the shearing behavior of this material. Experimental results from DMLS SS GP1 and AM Inconel 718 from literature were used to constitutively model the material responses of these additively manufactured metals. Overall, this framework has been designed to serve as standard, from which build orientation selection can be used to meet specific desired industry requirements.
Show less - Date Issued
- 2018
- Identifier
- CFE0007097, ucf:52883
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007097
- Title
- THE INCOMPATIBILITY OF FREEDOM OF THE WILL AND ANTHROPOLOGICAL PHYSICALISM.
- Creator
-
Gonzalez, Ariel, Rodgers, Travis, University of Central Florida
- Abstract / Description
-
Many contemporary naturalistic philosophers have taken it for granted that a robust theory of free will, one which would afford us with an agency substantial enough to render us morally responsible for our actions, is itself not conceptually compatible with the philosophical theory of naturalism. I attempt to account for why it is that free will (in its most substantial form) cannot be plausibly located within a naturalistic understanding of the world. I consider the issues surrounding an...
Show moreMany contemporary naturalistic philosophers have taken it for granted that a robust theory of free will, one which would afford us with an agency substantial enough to render us morally responsible for our actions, is itself not conceptually compatible with the philosophical theory of naturalism. I attempt to account for why it is that free will (in its most substantial form) cannot be plausibly located within a naturalistic understanding of the world. I consider the issues surrounding an acceptance of a robust theory of free will within a naturalistic framework. Timothy O'Connor's reconciliatory effort in maintaining both a scientifically naturalist understanding of the human person and a full-blooded theory of agent-causal libertarian free will is considered. I conclude that Timothy O'Connor's reconciliatory model cannot be maintained and I reference several conceptual difficulties surrounding the reconciliation of agent-causal libertarian properties with physical properties that haunt the naturalistic libertarian.
Show less - Date Issued
- 2014
- Identifier
- CFH0004628, ucf:45292
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004628