Current Search: optical (x)
Pages
-
-
Title
-
NONLINEAR OPTICAL PROPERTIES OF ORGANIC CHROMOPHORES CALCULATED WITHIN TIME DEPENDENT DENSITY FUNCTIONAL THEORY.
-
Creator
-
Tafur, Sergio, Kokoouline, Viatcheslav, University of Central Florida
-
Abstract / Description
-
Time Dependent Density Functional Theory offers a good accuracy/computational cost ratio among different methods used to predict the electronic structure for molecules of practical interest. The Coupled Electronic Oscillator (CEO) formalism was recently shown to accurately predict Nonlinear Optical (NLO) properties of organic chromophores when combined with Time Dependent Density Functional Theory. Unfortunately, CEO does not lend itself easily to interpretation of the structure activity...
Show moreTime Dependent Density Functional Theory offers a good accuracy/computational cost ratio among different methods used to predict the electronic structure for molecules of practical interest. The Coupled Electronic Oscillator (CEO) formalism was recently shown to accurately predict Nonlinear Optical (NLO) properties of organic chromophores when combined with Time Dependent Density Functional Theory. Unfortunately, CEO does not lend itself easily to interpretation of the structure activity relationships of chromophores. On the other hand, the Sum Over States formalism in combination with semiempirical wavefunction methods has been used in the past for the design of simplified essential states models. These models can be applied to optimization of NLO properties of interest for applications. Unfortunately, TD-DFT can not be combined directly with SOS because state-to-state transition dipoles are not defined in the linear response TD approach. In this work, a second order CEO approach to TD-DFT is simplified so that properties of double excited states and state-to-state transition dipoles may be expressed through the combination of linear response properties. This approach is termed the a posteriori Tamm-Dancoff approximation (ATDA), and validated against high-level wavefunction theory methods. Sum over States (SOS) and related Two-Photon Transition Matrix formalism are then used to predict Two-Photon Absorption (2PA) profiles and anisotropy, as well as Second Harmonic Generation (SHG) properties. Numerical results for several conjugated molecules are in excellent agreement with CEO and finite field calculations, and reproduce experimental measurements well.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001853, ucf:47372
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001853
-
-
Title
-
Optical Properties of Single Nanoparticles and Two-dimensional Arrays of Plasmonic Nanostructures.
-
Creator
-
Zhou, Yadong, Zou, Shengli, Harper, James, Zhai, Lei, Chen, Gang, Zheng, Qipeng, University of Central Florida
-
Abstract / Description
-
The tunability of plasmonic properties of nanomaterials makes them promising in many applications such as molecular detection, spectroscopy techniques, solar energy materials, etc. In the thesis, we mainly focus on the interaction between light with single nanoparticles and two-dimensional plasmonic nanostructures using electrodynamic methods. The fundamental equations of electromagnetic theory: Maxwell's equations are revisited to solve the problems of light-matter interaction, particularly...
Show moreThe tunability of plasmonic properties of nanomaterials makes them promising in many applications such as molecular detection, spectroscopy techniques, solar energy materials, etc. In the thesis, we mainly focus on the interaction between light with single nanoparticles and two-dimensional plasmonic nanostructures using electrodynamic methods. The fundamental equations of electromagnetic theory: Maxwell's equations are revisited to solve the problems of light-matter interaction, particularly the interaction of light and noble nanomaterials, such as gold and silver. In Chapter 1, Stokes parameters that describe the polarization states of electromagnetic wave are presented. The scattering and absorption of a particle with an arbitrary shape are discussed. In Chapter 2, several computational methods for solving the optical response of nanomaterials when they are illuminated by incident light are studied, which include the Discrete Dipole Approximation (DDA) method, the coupled dipole (CD) method, etc. In Chapter 3, the failure and reexamination of the relation between the Raman enhancement factor and local enhanced electric field intensity is investigated by placing a molecular dipole in the vicinity of a silver rod. Using a silver rod and a molecular dipole, we demonstrate that the relation generated using a spherical nanoparticle cannot simply be applied to systems with particles of different shapes. In Chapter 4, a silver film with switchable total transmission/reflection is discussed. The film is composed of two-dimensional rectangular prisms. The factors affecting the transmission (reflection) as well as the mechanisms leading to the phenomena are studied. Later, in Chapter 5 and 6, the sandwiched nano-film composed of two 2D rectangular prisms arrays and two glass substrates with a continuous film in between is examined to enhance the transmission of the continuous silver film.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007117, ucf:51943
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007117
-
-
Title
-
Tuning chemical and optical properties of nanomaterials: From extended surfaces to finite nanoclusters.
-
Creator
-
Hooshmand Gharehbagh, Zahra, Rahman, Talat, Kara, Abdelkader, Kaden, William, Uribe Romo, Fernando, University of Central Florida
-
Abstract / Description
-
Modifying the electronic and optical properties of surfaces and nanostructures are in the forefront of surface science. This dissertation's focus is on this problem. The first part is on the adsorption of functionalized naphthalene molecules on Cu(111) surface. The results show that changing the functional group results in modification of charge redistribution at the interface of molecule and surface and the electronic structure of Cu changes. The second part discusses the new Moir(&)#233;...
Show moreModifying the electronic and optical properties of surfaces and nanostructures are in the forefront of surface science. This dissertation's focus is on this problem. The first part is on the adsorption of functionalized naphthalene molecules on Cu(111) surface. The results show that changing the functional group results in modification of charge redistribution at the interface of molecule and surface and the electronic structure of Cu changes. The second part discusses the new Moir(&)#233; structure of h-BN on Rh(111) induced by intrinsic carbon impurities of Rh single crystals. We found that these impurities intercalate between h-BN and Rh(111) with new local properties such as charge transfer from Rh and C atoms to h-BN such as appearance of new states in the BN. The third part is about the study of CO super lattice structure at 1/2ML when adsorbed on Pd(111). By considering all the possible overlayer structures and using several different functionals, we found that two structures can be made by CO adsorbents and all the other structures convert to one of these two. The fourth part is on the electronic and optical properties of ligated Ag44 nanoclusters. Using DFT and TDDFT calculations we show that when the pH level of a solvent is changed, the protecting ligands deprotonate and their interaction with each other as well as the metal core varies and the new peaks in absorption spectrum arise from electron rich deprotonated ligands. The final part is on the adsorption of planar molecules on MoS2. We found that the isomers of di-iodobenzene adsorb with same strength on MoS2 and it is the symmetry of frontier orbitals that identifies their different behavior. Also the adsorption and dissociation of benzenethiol on MoS2 was studied and the results show that benzenethiol dissociates only in the presence of defects and heals the structure.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007337, ucf:52138
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007337
-
-
Title
-
Determining the Small-scale Structure and Particle Properties in Saturn's Rings from Stellar and Radio Occultations.
-
Creator
-
Jerousek, Richard, Colwell, Joshua, Britt, Daniel, Fernandez, Yan, Hedman, Mathew, University of Central Florida
-
Abstract / Description
-
Saturn's rings consist of icy particles of various sizes ranging from millimeters to several meters. Particles may aggregate into ephemeral elongated clumps known as self-gravity wakes in regions where the surface mass density and epicyclic frequency give a Toomre critical wavelength which is much larger than the largest individual particles (Julian and Toomre 1966). Optical depth measurements at different wavelengths can be used to constrain the sizes of individual particles (Zebker et al....
Show moreSaturn's rings consist of icy particles of various sizes ranging from millimeters to several meters. Particles may aggregate into ephemeral elongated clumps known as self-gravity wakes in regions where the surface mass density and epicyclic frequency give a Toomre critical wavelength which is much larger than the largest individual particles (Julian and Toomre 1966). Optical depth measurements at different wavelengths can be used to constrain the sizes of individual particles (Zebker et al. 1985, Marouf et al. 1983) while measurements of optical depths spanning many viewing geometries can be used to determine the properties of self-gravity wakes (Colwell et al. 2006, 2007, Hedman et al. 2007, Nicholson and Hedman 2010, Jerousek et al. 2016). Studies constraining the parameters of the assumed power-law particle size distribution have been attempted (Zebker et al. 1985, Marouf et al. 1983) but have not yet accounted for the presence of self-gravity wakes or the much larger elongated particle aggregates seen in Cassini Imaging Subsystem (ISS) images and commonly referred to as (")straw("). We use a multitude of Cassini stellar occultations measured by UVIS (Ultraviolet Imaging Spectrograph) and VIMS (Visual and Infrared Mapping Spectrometer) together with Cassini's RSS (Radio Science Sub System) X-band, Ka-band, and S-band radio occultations to better constrain the particle size distribution throughout Saturn's main ring system, including regions where self-gravity wakes have a significant effect on the measured optical depth of the rings.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007019, ucf:52029
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007019
-
-
Title
-
Effect of Nonclassical Optical Turbulence on a Propagating Laser Beam.
-
Creator
-
Beason, Melissa, Phillips, Ronald, Atia, George, Richardson, Martin, Andrews, Larry, Shivamoggi, Bhimsen, University of Central Florida
-
Abstract / Description
-
Theory developed for the propagation of a laser beam through optical turbulence generally assumes that the turbulence is both homogeneous and isotropic and that the associated spectrum follows the classical Kolmogorov spectral power law of . If the atmosphere deviates from these assumptions, beam statistics such as mean intensity, correlation, and scintillation index could vary significantly from mathematical predictions. This work considers the effect of nonclassical turbulence on a...
Show moreTheory developed for the propagation of a laser beam through optical turbulence generally assumes that the turbulence is both homogeneous and isotropic and that the associated spectrum follows the classical Kolmogorov spectral power law of . If the atmosphere deviates from these assumptions, beam statistics such as mean intensity, correlation, and scintillation index could vary significantly from mathematical predictions. This work considers the effect of nonclassical turbulence on a propagated beam. Namely, anisotropy of the turbulence and a power law that deviates from . A mathematical model is developed for the scintillation index of a Gaussian beam propagated through nonclassical turbulence and theory is extended for the covariance function of intensity of a plane wave propagated through nonclassical turbulence. Multiple experiments over a concrete runway and a grass range verify the presence of turbulence which varies between isotropy and anisotropy. Data is taken throughout the day and the evolution of optical turbulence is considered. Also, irradiance fluctuation data taken in May 2018 over a concrete runway and July 2018 over a grass range indicate an additional beam shaping effect. A simplistic mathematical model was formulated which reproduced the measured behavior of contours of equal mean intensity and scintillation index.?
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007310, ucf:52646
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007310
-
-
Title
-
Hybrid integration of second- and third-order highly nonlinear waveguides on silicon substrates.
-
Creator
-
Camacho Gonzalez, Guillermo Fernando, Fathpour, Sasan, Likamwa, Patrick, Amezcua Correa, Rodrigo, Peale, Robert, University of Central Florida
-
Abstract / Description
-
In order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film...
Show moreIn order to extend the capabilities and applications of silicon photonics, other materials and compatible technologies have been developed and integrated on silicon substrates. A particular class of integrable materials are those with high second- and third-order nonlinear optical properties. This work presents contributions made to nonlinear integrated photonics on silicon substrates, including chalcogenide waveguides for over an octave supercontinuum generation, and rib-loaded thin-film lithium niobate waveguides for highly efficient second-harmonic generation. Through the pursuit of hybrid integration of the two types of waveguides for applications such as on-chip self-referenced optical frequency combs, we have experimentally demonstrated fabrication integrability of chalcogenide and thin-film lithium niobate waveguides in a single chip and a pathway for both second- and third-order nonlinearities occurring therein. Accordingly, design specifications for an efficient nonlinear integrated waveguide are reported, showing over an octave supercontinuum generation and frequency selectivity for second-harmonic generation, enabling potentials of on-chip interferometry techniques for carrier-envelope offset detection, and hence stabilized optical combs.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007607, ucf:52560
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007607
-
-
Title
-
THE EFFECTS OF PHOSPHATE AND SILICATE INHIBITORS ON SURFACE ROUGHNESS AND COPPER RELEASE IN WATER DISTRIBUTION SYSTEMS.
-
Creator
-
MacNevin, David, Taylor, James, University of Central Florida
-
Abstract / Description
-
The effects of corrosion inhibitors on water quality and the distribution system were studied. This dissertation investigates the effect of inhibitors on iron surface roughness, copper surface roughness, and copper release. Corrosion inhibitors included blended poly/ortho phosphate, sodium orthophosphate, zinc orthophosphate, and sodium silicate. These inhibitors were added to a blend of surface water, groundwater, and desalinated brackish water. Surface roughness of galvanized iron, unlined...
Show moreThe effects of corrosion inhibitors on water quality and the distribution system were studied. This dissertation investigates the effect of inhibitors on iron surface roughness, copper surface roughness, and copper release. Corrosion inhibitors included blended poly/ortho phosphate, sodium orthophosphate, zinc orthophosphate, and sodium silicate. These inhibitors were added to a blend of surface water, groundwater, and desalinated brackish water. Surface roughness of galvanized iron, unlined cast iron, lined cast iron, and polyvinyl chloride was measured using pipe coupons exposed for three months. Roughness of each pipe coupon was measured with an optical surface profiler before and after exposure to inhibitors. For most materials, inhibitor did not have a significant effect on surface roughness; instead, the most significant factor determining the final surface roughness was the initial surface roughness. Coupons with low initial surface roughness tended to have an increase in surface roughness during exposure, and vice versa, implying that surface roughness tended to regress towards an average or equilibrium value. For unlined cast iron, increased alkalinity and increased temperature tended to correspond with increases in surface roughness. Unlined cast iron coupons receiving phosphate inhibitors were more likely to have a significant change in surface roughness, suggesting that phosphate inhibitors affect stability of iron pipe scales. Similar roughness data collected with new copper coupons showed that elevated orthophosphate, alkalinity, and temperature were all factors associated with increased copper surface roughness. The greatest increases in surface roughness were observed with copper coupons receiving phosphate inhibitors. Smaller increases were observed with copper coupons receiving silicate inhibitor or no inhibitor. With phosphate inhibitors, elevated temperature and alkalinity were associated with larger increases in surface roughness and blue-green copper (II) scales.. Otherwise a compact, dull red copper (I) scale was observed. These data suggest that phosphate inhibitor addition corresponds with changes in surface morphology, and surface composition, including the oxidation state of copper solids. The effects of corrosion inhibitors on copper surface chemistry and cuprosolvency were investigated. Most copper scales had X-ray photoelectron spectroscopy binding energies consistent with a mixture of Cu2O, CuO, Cu(OH)2, and other copper (II) salts. Orthophosphate and silica were detected on copper surfaces exposed to each inhibitor. All phosphate and silicate inhibitors reduced copper release relative to the no inhibitor treatments, keeping total copper below the 1.3 mg/L MCLG for all water quality blends. All three kinds of phosphate inhibitors, when added at 1 mg/L as P, corresponded with a 60% reduction in copper release relative to the no inhibitor control. On average, this percent reduction was consistent across varying water quality conditions in all four phases. Similarly when silicate inhibitor was added at 6 mg/L as SiO2, this corresponded with a 25-40% reduction in copper release relative to the no inhibitor control. Hence, on average, for the given inhibitors and doses, phosphate inhibitors provided more predictable control of copper release across changing water quality conditions. A plot of cupric ion concentration versus orthophosphate concentration showed a decrease in copper release consistent with mechanistic control by either cupric phosphate solubility or a diffusion limiting phosphate film. Thermodynamic models were developed to identify feasible controlling solids. For the no inhibitor treatment, Cu(OH)2 provided the closest prediction of copper release. With phosphate inhibitors both Cu(OH)2 and Cu(PO4)·2H2O models provided plausible predictions. Similarly, with silicate inhibitor, the Cu(OH)2 and CuSiO3·H2O models provided plausible predictions.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002001, ucf:47621
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002001
-
-
Title
-
Ytterbium-doped fiber-seeded thin-disk master oscillator power amplifier laser system.
-
Creator
-
Willis-Ott, Christina, Richardson, Martin, Schulzgen, Axel, Delfyett, Peter, Chow, Louis, University of Central Florida
-
Abstract / Description
-
Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 ?m ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin...
Show moreLasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 ?m ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. Temporal tailoring and spectral control are performed in the low power fiber portion of the system with the high pulse energy being generated in the regenerative amplifier. The seed system consists of a 1030 nm fiber-coupled diode, which is transmitted through a Mach-Zehnder-type modulator in order to temporally vary the pulse shape. Typical pulses are 20-30 ns in duration and have energies of ~0.2 nJ from the modulator. These are amplified in a fiber pre-amplifier stage to ~100 nJ before being used to seed the free-space Yb:YAG thin-disk regenerative amplifier. Output pulses have maximum demonstrated pulse energies of 62 mJ with 20 ns pulse after ~250 passes in the cavity. The effects of thermal distortion in laser and passive optical materials are also. Generally the development of high power and high energy lasers is limited by thermal management strategies, as thermally-induced distortions can degrade laser performance and potentially cause catastrophic damage. Novel materials, such as optical ceramics, can be used to mitigate thermal distortions; however, thorough analysis is required to optimize their fabrication and minimize thermal distortions. Using a Shack-Hartmann wavefront sensor (SHWFS), it is possible to analyze the distortion induced in passive and doped optical elements by high power lasers. For example, the thin-disk used in the regenerative amplifier is examined in-situ during CW operation (up to 2 kW CW pump power). Additionally, passive oxide-based optical materials and Yb:YAG optical ceramics are also examined by pumping at 2 and 1 ?m respectively to induce thermal distortions which are analyzed with the SHWFS. This method has been developed as a diagnostic for the relative assessment of material quality, and to grade differences in ceramic laser materials associated with differences in manufacturing processes and/or the presence of impurities. In summation, this dissertation presents a high energy 1 ?m laser system which is novel in its combination of energy level and temporal tailoring, and an analysis of thermal distortions relevant to the development of high power laser systems.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004961, ucf:49588
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004961
-
-
Title
-
ELECTRON TRANSPORT IN SINGLE MOLECULE MAGNET TRANSISTORS AND OPTICAL LAMBDA TRANSITIONS IN THE NITROGEN-VACANCY CENTER IN DIAMOND.
-
Creator
-
Gonzalez, Gabriel, Leuenberger, Michael, University of Central Florida
-
Abstract / Description
-
This thesis presents some theoretical studies dealing with quantum interference effects in electron transport through single molecule magnet transistors and a study on optical non-conserving spin transitions in the Nitrogen-vacancy center in diamond. The thesis starts with a brief general introduction to the physics of quantum transport through single electron transistors. Afterwards, the main body of the thesis is divided into three studies: (i) In chapter (2) we describe the properties of...
Show moreThis thesis presents some theoretical studies dealing with quantum interference effects in electron transport through single molecule magnet transistors and a study on optical non-conserving spin transitions in the Nitrogen-vacancy center in diamond. The thesis starts with a brief general introduction to the physics of quantum transport through single electron transistors. Afterwards, the main body of the thesis is divided into three studies: (i) In chapter (2) we describe the properties of single molecule magnets and the Berry phase interference present in this nanomagnets. We then propose a way to detect quantum interference experimentally in the current of a single molecule magnet transistor using polarized leads. We apply our theoretical results to the newly synthesized nanomagnet Ni4. (ii) In chapter (3) we review the Kondo effect and present a microscopic derivation of the Kondo Hamiltonian suitable for full and half integer spin nanomagnets. We then calculate the conductance of the single molecule magnet transistor in the presence of the Kondo effect for Ni4 and show how the Berry phase interference becomes temperature dependent. (iii) We conclude in chapter (4) with a theoretical study of the single Nitrogen vacancy defect center in diamond. We show that it is possible to have spin non-conserving transitions via the hyperfine interaction and propose a way to write and read quantum information using circularly polarized light by means of optical Lambda transitions in this solid state system.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002740, ucf:48179
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002740
-
-
Title
-
COMPUTATIONAL STUDY OF THE NEAR FIELD SPONTANEOUS CREATION OF PHOTONIC STATES COUPLED TO FEW LEVEL SYSTEMS.
-
Creator
-
Tafur, Sergio, Leuenberger, Michael, University of Central Florida
-
Abstract / Description
-
Models of the spontaneous emission and absorption of photons coupled to the electronic states of quantum dots, molecules, N-V (single nitrogen vacancy) centers in diamond, that can be modeled as artificial few level atoms, are important to the development of quantum computers and quantum networks. A quantum source modeled after an effective few level system is strongly dependent on the type and coupling strength the allowed transitions. These selection rules are subject to the Wigner-Eckert...
Show moreModels of the spontaneous emission and absorption of photons coupled to the electronic states of quantum dots, molecules, N-V (single nitrogen vacancy) centers in diamond, that can be modeled as artificial few level atoms, are important to the development of quantum computers and quantum networks. A quantum source modeled after an effective few level system is strongly dependent on the type and coupling strength the allowed transitions. These selection rules are subject to the Wigner-Eckert theorem which specifies the possible transitions during the spontaneous creation of a photonic state and its subsequent emission. The model presented in this dissertation describes the spatio-temporal evolution of photonic states by means of a Dirac-like equation for the photonic wave function within the region of interaction of a quantum source. As part of this aim, we describe the possibility to shift from traditional electrodynamics and quantum electrodynamics, in terms of electric and magnetic fields, to one in terms of a photonic wave function and its operators. The mapping between these will also be presented herein. It is further shown that the results of this model can be experimentally verified. The suggested method of verification relies on the direct comparison of the calculated density matrix or Wigner function, associated with the quantum state of a photon, to ones that are experimentally reconstructed through optical homodyne tomography techniques. In this non-perturbative model we describe the spontaneous creation of photonic state in a non-Markovian limit which does not implement the Weisskopf-Wigner approximation. We further show that this limit is important for the description of how a single photonic mode is created from the possibly infinite set of photonic frequencies $\nu_k$ that can be excited in a dielectric-cavity from the vacuum state. We use discretized central-difference approximations to the space and time partial derivatives, similar to finite-difference time domain models, to compute these results. The results presented herein show that near field effects need considered when describing adjacent quantum sources that are separated by distances that are small with respect to the wavelength of their spontaneously created photonic states. Additionally, within the future scope of this model,we seek results in the Purcell and Rabi regimes to describe enhanced spontaneous emission events from these few-level systems, as embedded in dielectric cavities. A final goal of this dissertation is to create novel computational and theoretical models that describe single and multiple photon states via single photon creation and annihilation operators.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003881, ucf:48739
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003881
-
-
Title
-
Investigating New Guaiazulenes and Diketopyrropyrroles for Photonic Applications.
-
Creator
-
Ghazvini Zadeh, Ebrahim, Belfield, Kevin, Campiglia, Andres, Yuan, Yu, Zou, Shengli, Cheng, Zixi, University of Central Florida
-
Abstract / Description
-
?-Conjugated systems have been the focus of study in recent years in order to understand their charge transport and optical properties for use in organic electronic devices, fluorescence bioimaging, sensors, and 3D optical data storage (ODS), among others. As a result, several molecular building blocks have been designed, allowing new frontiers to be realized. While various successful building blocks have been fine-tuned at both the electronic and molecular structure level to provide advanced...
Show more?-Conjugated systems have been the focus of study in recent years in order to understand their charge transport and optical properties for use in organic electronic devices, fluorescence bioimaging, sensors, and 3D optical data storage (ODS), among others. As a result, several molecular building blocks have been designed, allowing new frontiers to be realized. While various successful building blocks have been fine-tuned at both the electronic and molecular structure level to provide advanced photophysical and optoelectronic characteristics, the azulene framework has been under-appreciated despite its unique electronic and optical properties. Among several attributes, azulenes are vibrant blue naturally occurring hydrocarbons that exhibit large dipolar character, coupled with stimuli-responsive behavior in acidic environments. Additionally, the non-toxic nature and the accompanying eco-friendly feature of some azulenes, namely guaiazulene, may set the stage to further explore a more (")green(") route towards photonic and conductive materials.The first part of this dissertation focuses on exploiting guaiazulene as a natural building block for the synthesis of chromophores with varying stimuli-responsiveness. Results described in Chapter 1 show that extending the conjugation of guaiazulene through its seven-membered ring methyl group with aromatic substituents dramatically impacts the optical properties of the guaiazulenium carbocation. Study of these ?(-)stabilized tropilium ions enabled establishing photophysical structure-property trends for guaiazulene-terminated ?-conjugated analogs under acidic conditions, including absorption, emission, quantum yield, and optical band gap patterns. These results were exploited in the design of a photosensitive polymeric system with potential application in the field of three dimensional (3D) optical data storage (ODS).Chapter 2 describes the use of guaiazulene reactive sites (C-3 and C-4 methyl group) to generate a series of cyclopenta[ef]heptalenes that exhibit strong stimuli-responsive behavior. The approach presents a versatile route that allows for various substrates to be incorporated into the resulting cyclopenta[ef]heptalenes, especially after optimization that led to devising a one-pot reaction toward such tricyclic systems. Examining the UV-vis absorption profiles in neutral and acidic media showed that the extension of conjugation at C(4) of the cyclopenta[ef]heptalene skeleton results in longer absorption maxima and smaller optical energy gaps. Additionally, it was concluded that these systems act as sensitizers of a UV-activated ((<) 300 nm) photoacid generator (PAG), via intermolecular photoinduced electron transfer (PeT), upon which the PAG undergoes photodecomposition resulting in the generation of acid.In a related study, the guaiazulene methyl group at C-4 was employed to study the linear and nonlinear optical properties of 4-styrylguaiazulenes, having the same ?(-)donor with varying ?-spacer. It was realized that the conjugation length correlates with the extent of bathochromic shift of the protonated species. On the other hand, a trend of decreasing quantum yield was established for this set of 4-styrylguaiazulenes, which can be explained by the increasingly higher degree of flexibility.The second part of this dissertation presents a comprehensive investigation of the linear photophysical, photochemical, and nonlinear optical properties of diketopyrrolopyrrole (DPP)-based derivatives, including two-photon absorption (2PA), femtosecond transient absorption, stimulated emission spectroscopy, and superfluorescence phenomena. The synthetic feasibility, ease of modification, outstanding robustness, and attractive spectroscopic properties of DPPs have motivated their study for fluorescence microscopy applications, concluding that the prepared DPP's are potentially suitable chromophores for high resolution stimulated emission depletion (STED) microscopy.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006034, ucf:50986
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006034
-
-
Title
-
Quantum Chemical Studies for the Engineering of Metal Organic Materials.
-
Creator
-
Rivera Jacquez, Hector, Masunov, Artem, Balaeff, Alexander, Harper, James, Heider, Emily, Zou, Shengli, Kaden, William, University of Central Florida
-
Abstract / Description
-
Metal Organic Materials (MOM) are composed of transition metal ions as connectors and organic ligands as linkers. MOMs have been found to have high porosity, catalytic, and optical properties. Here we study the gas adsorption, color change, and non-linear optical properties of MOMs. These properties can be predicted using theoretical methods, and the results may provide experimentalists with guidance for rational design and engineering of novel MOMs. The theory levels used include semi...
Show moreMetal Organic Materials (MOM) are composed of transition metal ions as connectors and organic ligands as linkers. MOMs have been found to have high porosity, catalytic, and optical properties. Here we study the gas adsorption, color change, and non-linear optical properties of MOMs. These properties can be predicted using theoretical methods, and the results may provide experimentalists with guidance for rational design and engineering of novel MOMs. The theory levels used include semi-empirical quantum mechanical calculations with the PM7 Hamiltonian and, Density Functional Theory (DFT) to predict the geometry and electronic structure of the ground state, and Time Dependent DFT (TD-DFT) to predict the excited states and the optical properties.The molecular absorption capacity of aldoxime coordinated Zn(II) based MOMs (previously measured experimentally) is predicted by using PM7 Theory level. The 3D structures were optimized with and without host molecules inside the pores. The absorption capacity of these crystals was predicted to be 8H2 or 3N2 per unit cell. When going beyond this limit, the structural integrity of the bulk material becomes fractured and microcrystals are observed both experimentally and theoretically.The linear absorption properties of Co(II) based complexes are known to change color when the coordination number is altered. In order to understand the mechanism of this color change TD-DFT methods are employed. The chromic behavior of the Co(II) based complexes studied was confirmed to be due to a chain in coordination number that resulted in lower metal to ligand distances. These distances destabilize the occupied metal d orbitals, and as a consequence of this, the metal to ligand transition energy is lowered enough to allow the crystals to absorb light at longer wavelengths.Covalent organic frameworks (COFs) present an extension of MOM principles to the main group elements. The synthesis of ordered COFs is possible by using predesigned structures andcarefully selecting the building blocks and their conditions for assembly. The crystals formed by these systems often possess non-linear optical (NLO) properties. Second Harmonic Generation (SHG) is one of the most used optical processes. Currently, there is a great demand for materials with NLO optical properties to be used for optoelectronic, imaging, sensing, among other applications. DFT calculations can predict the second order hyperpolarizability ?2 and tensor components necessary to estimate NLO. These calculations for the ?2 were done with the use of the Berry's finite field approach. An efficient material with high ?2 was designed and the resulting material was predicted to be nearly fivefold higher than the urea standard.Two-photon absorption (2PA) is another NLO effect. Unlike SHG, it is not limited to acentric material and can be used development of in vivo bio-imaging agents for the brain. Pt(II) complexes with porphyrin derivatives are theoretically studied for that purpose. The mechanism of 2PA enhancement was identified. For the most efficient porphyrin, the large 2PA cross-section was found to be caused by a HOMO-LUMO+2 transition. This transition is strongly coupled to 1PA allowed Q-band HOMO-LUMO states by large transition dipoles. Alkyl carboxyl substituents delocalize the LUMO+2 orbital due to their strong ?-acceptor effect, enhancing transition dipoles and lowering the 2PA transition to the desirable wavelengths range.The mechanism 2PA cross-section enhancement of aminoxime and aldoxime ligands upon metal addition of is studied with TD-DFT methods. This mechanism of enhancement is found to be caused by the polarization of the ligand orbitals by the metal cation. After polarization an increase in ligand to ligand transition dipole moment. This enhancement of dipole moment is related to the increase in 2PA cross-sections.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005990, ucf:50777
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005990
-
-
Title
-
The Effect of Morphology on Reflectance in Silicon Nanowires Grown by Electroless Etching.
-
Creator
-
Velez, Victor, Sundaram, Kalpathy, Kapoor, Vikram, Yuan, Jiann-Shiun, Abdolvand, Reza, Kar, Aravinda, University of Central Florida
-
Abstract / Description
-
The strong light trapping properties of Silicon Nanowires have attracted much interest in the past few years for the conversion of sun energy into conventional electricity. Studies have been completed for many researchers to reduce the cost of fabrication and reflectance of solar light in these nanostructures to make a cheaper and more efficient solar cell technology by using less equipment for fabrication and employing different materials and solution concentrations. Silver, a conducting and...
Show moreThe strong light trapping properties of Silicon Nanowires have attracted much interest in the past few years for the conversion of sun energy into conventional electricity. Studies have been completed for many researchers to reduce the cost of fabrication and reflectance of solar light in these nanostructures to make a cheaper and more efficient solar cell technology by using less equipment for fabrication and employing different materials and solution concentrations. Silver, a conducting and stable metal is used these days as a precursor to react with silicon and then form the nanowires. Its adequate selection of solution concentration for a size of silicon substrate and the treatment for post-cleaning of silver dendrites make it a viable method among the others. It is an aim of this research to obtain significant low reflectance across the visible solar light range. Detailed concentration, fabrication and reflectance studies is carried out on silicon wafer in order to expand knowledge and understanding.In this study, electroless etching technique has been used as the growth mechanism of SiNWs at room temperature. Optimum ratios of solution concentration and duration for different sizes of exposed area to grow tall silicon nanowires derived from experimentation are presented. Surface imaging of the structures and dimension of length and diameter have been determined by Scanner Electron Microscopy (SEM) and the reflectance in the optical range in silicon nanowires has been make using UV-Visible Spectrophotometer.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006815, ucf:51807
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006815
-
-
Title
-
Light-Matter Interactions of Plasmonic Nanostructures.
-
Creator
-
Reed, Jennifer, Zou, Shengli, Belfield, Kevin, Zhai, Lei, Hernandez, Eloy, Vanstryland, Eric, University of Central Florida
-
Abstract / Description
-
Light interaction with matter has long been an area of interest throughout history, spanning many fields of study. In recent decades, the investigation of light-matter interactions with nanostructures has become an intense area of research in the field of photonics. Metallic nanostructures, in particular, are of interest due to the interesting properties that arise when interacting with light. The properties are a result of the excitation of surface plasmons which are the collective...
Show moreLight interaction with matter has long been an area of interest throughout history, spanning many fields of study. In recent decades, the investigation of light-matter interactions with nanostructures has become an intense area of research in the field of photonics. Metallic nanostructures, in particular, are of interest due to the interesting properties that arise when interacting with light. The properties are a result of the excitation of surface plasmons which are the collective oscillation of the conduction electrons in the metal. Since the conduction electrons can be thought of as harmonic oscillators, they are quantized in a similar fashion. Just as a photon is a quantum of oscillations of an electromagnetic field, the plasmon is a quantum of electron oscillations of a metal. There are three types of plasmons:1. Bulk plasmons, also called volume plasmons, are longitudinal density fluctuations which propagate through a bulk metal with an eigenfrequency of ?_p called the plasma frequency.2. Localized surface plasmons are non-propagating excitations of the conduction electrons of a metallic nanoparticle coupled to an electromagnetic field. 3. Surface plasmon polaritons are evanescent, dispersive propagating electromagnetic waves formed by a coupled state between a photon and the excitation of the surface plasmons. They propagate along the surface of a metal-dielectric interface with a broad spectrum of eigenfrequencies from ?=0 to ?= ?_p??2. Plasmonics is a subfield of photonics which focuses on the study of surface plasmons and the optical properties that result from light interacting with metal films and nanostructures on the deep subwavelength scale. In this thesis, plasmonic nanostructures are investigated for optical waveguides and other nanophotonic applications through computational simulations primarily base on electrodynamic theory. The theory was formulated by several key figures and established by James Clerk Maxwell after he published a set of relations which describe all classical electromagnetic phenomena, known as Maxwell's equations. Using methods based on Maxwell's equations, the optical properties of metallic nanostructures utilizing surface plasmons is explored. In Chapter 3, light propagation of bright and dark modes of a partially and fully illuminated silver nanorod is investigated for waveguide applications. Then, the origin of the Fano resonance line shape in the scattering spectra of a silver nanorod is investigated. Next, in Chapter 4, the reflection and transmission of a multilayer silver film is simulated to observe the effects of varying the dielectric media between the layers on light propagation. Building on the multilayer film work, metal-insulator-metal waveguides are explored by perforating holes in the bottom layer of a two layer a silver film to investigate the limits of subwavelength light trapping, confinement, and propagation. Lastly, in Chapter 5, the effect of surface plasmons on the propagation direction of electromagnetic wave around a spherical silver nanoparticle which shows an effective negative index of refraction is examined. In addition, light manipulation using a film of silver prisms with an effective negative index of refraction is also investigated. The silver prisms demonstrate polarization selective propagation for waveguide and optical filter applications. These studies provide insight into plasmonic mechanisms utilized to overcome the diffraction limit of light. Through better understanding of how to manipulating light with plasmonic nanostructures, further advancements in nanophotonic technologies for applications such as extremely subwavelength waveguides, sensitive optical detection, optical filters, polarizers, beam splitters, optical data storage devices, high speed data transmission, and integrated subwavelength photonic circuits can be achieved.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005049, ucf:49964
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005049
-
-
Title
-
LIQUID CRYSTAL OPTICS FOR COMMUNICATIONS, SIGNAL PROCESSING AND 3-D MICROSCOPIC IMAGING.
-
Creator
-
Khan, Sajjad, Riza, Nabeel, University of Central Florida
-
Abstract / Description
-
This dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of...
Show moreThis dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of the applications demonstrated in this thesis are LC devices that are non-pixelated and can be controlled either electrically or optically. Instead of the typical pixel-by-pixel control as is custom in LC devices, the phase profile across the aperture of these novel LC devices is varied through the use of high impedance layers. Due to the presence of the high impedance layer, there forms a voltage gradient across the aperture of such a device which results in a phase gradient across the LC layer which in turn is accumulated by the optical beam traversing through this LC device. The geometry of the electrical contacts that are used to apply the external voltage will define the nature of the phase gradient present across the optical beam. In order to steer a laser beam in one angular dimension, straight line electrical contacts are used to form a one dimensional phase gradient while an annular electrical contact results in a circularly symmetric phase profile across the optical beam making it suitable for focusing the optical beam. The geometry of the electrical contacts alone is not sufficient to form the linear and the quadratic phase profiles that are required to either deflect or focus an optical beam. Clever use of the phase response of a typical nematic liquid crystal (NLC) is made such that the linear response region is used for the angular beam deflection while the high voltage quadratic response region is used for focusing the beam. Employing an NLC deflector, a device that uses the linear angular deflection, laser beam steering is demonstrated in two orthogonal dimensions whereas an NLC lens is used to address the third dimension to complete a three dimensional (3-D) scanner. Such an NLC deflector was then used in a variable optical attenuator (VOA), whereby a laser beam coupled between two identical single mode fibers (SMF) was mis-aligned away from the output fiber causing the intensity of the output coupled light to decrease as a function of the angular deflection. Since the angular deflection is electrically controlled, hence the VOA operation is fairly simple and repeatable. An extension of this VOA for wavelength tunable operation is also shown in this dissertation. A LC spatial light modulator (SLM) that uses a photo-sensitive high impedance electrode whose impedance can be varied by controlling the light intensity incident on it, is used in a control system for a phased array antenna. Phase is controlled on the Write side of the SLM by controlling the intensity of the Write laser beam which then is accessed by the Read beam from the opposite side of this reflective SLM. Thus the phase of the Read beam is varied by controlling the intensity of the Write beam. A variable fiber-optic delay line is demonstrated in the thesis which uses wavelength sensitive and wavelength insensitive optics to get both analog as well as digital delays. It uses a chirped fiber Bragg grating (FBG), and a 1xN optical switch to achieve multiple time delays. The switch can be implemented using the 3-D optical scanner mentioned earlier. A technique is presented for ultra-low loss laser communication that uses a combination of strong and weak thin lens optics. As opposed to conventional laser communication systems, the Gaussian laser beam is prevented from diverging at the receiving station by using a weak thin lens that places the transmitted beam waist mid-way between a symmetrical transmitter-receiver link design thus saving prime optical power. LC device technology forms an excellent basis to realize such a large aperture weak lens. Using a 1-D array of LC deflectors, a broadband optical add-drop filter (OADF) is proposed for dense wavelength division multiplexing (DWDM) applications. By binary control of the drive signal to the individual LC deflectors in the array, any optical channel can be selectively dropped and added. For demonstration purposes, microelectromechanical systems (MEMS) digital micromirrors have been used to implement the OADF. Several key systems issues such as insertion loss, polarization dependent loss, wavelength resolution and response time are analyzed in detail for comparison with the LC deflector approach. A no-moving-parts axial scanning confocal microscope (ASCM) system is designed and demonstrated using a combination of a large diameter LC lens and a classical microscope objective lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is moved continuously over a 48 Ým range with measured 3-dB axial resolution of 3.1 Ým using a 0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used to image an Indium Phosphide twin square optical waveguide sample with a 10.2 Ým waveguide pitch and 2.3 Ým height and width. Using fine analog electrical control of the LC lens, a super-fine sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful in various precision three dimensional imaging and profiling applications.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000750, ucf:46596
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000750
-
-
Title
-
Analysis of Behaviors in Crowd Videos.
-
Creator
-
Mehran, Ramin, Shah, Mubarak, Sukthankar, Gita, Behal, Aman, Tappen, Marshall, Moore, Brian, University of Central Florida
-
Abstract / Description
-
In this dissertation, we address the problem of discovery and representation of group activity of humans and objects in a variety of scenarios, commonly encountered in vision applications. The overarching goal is to devise a discriminative representation of human motion in social settings, which captures a wide variety of human activities observable in video sequences. Such motion emerges from the collective behavior of individuals and their interactions and is a significant source of...
Show moreIn this dissertation, we address the problem of discovery and representation of group activity of humans and objects in a variety of scenarios, commonly encountered in vision applications. The overarching goal is to devise a discriminative representation of human motion in social settings, which captures a wide variety of human activities observable in video sequences. Such motion emerges from the collective behavior of individuals and their interactions and is a significant source of information typically employed for applications such as event detection, behavior recognition, and activity recognition. We present new representations of human group motion for static cameras, and propose algorithms for their application to variety of problems.We first propose a method to model and learn the scene activity of a crowd using Social Force Model for the first time in the computer vision community. We present a method to densely estimate the interaction forces between people in a crowd, observed by a static camera. Latent Dirichlet Allocation (LDA) is used to learn the model of the normal activities over extended periods of time. Randomly selected spatio-temporal volumes of interaction forces are used to learn the model of normal behavior of the scene. The model encodes the latent topics of social interaction forces in the scene for normal behaviors. We classify a short video sequence of $n$ frames as normal or abnormal by using the learnt model. Once a sequence of frames is classified as an abnormal, the regions of anomalies in the abnormal frames are localized using the magnitude of interaction forces.The representation and estimation framework proposed above, however, has a few limitations. This algorithm proposes to use a global estimation of the interaction forces within the crowd. It, therefore, is incapable of identifying different groups of objects based on motion or behavior in the scene. Although the algorithm is capable of learning the normal behavior and detects the abnormality, but it is incapable of capturing the dynamics of different behaviors.To overcome these limitations, we then propose a method based on the Lagrangian framework for fluid dynamics, by introducing a streakline representation of flow. Streaklines are traced in a fluid flow by injecting color material, such as smoke or dye, which is transported with the flow and used for visualization. In the context of computer vision, streaklines may be used in a similar way to transport information about a scene, and they are obtained by repeatedly initializing a fixed grid of particles at each frame, then moving both current and past particles using optical flow. Streaklines are the locus of points that connect particles which originated from the same initial position.This approach is advantageous over the previous representations in two aspects: first, its rich representation captures the dynamics of the crowd and changes in space and time in the scene where the optical flow representation is not enough, and second, this model is capable of discovering groups of similar behavior within a crowd scene by performing motion segmentation. We propose a method to distinguish different group behaviors such as divergent/convergent motion and lanes using this framework. Finally, we introduce flow potentials as a discriminative feature to recognize crowd behaviors in a scene. Results of extensive experiments are presented for multiple real life crowd sequences involving pedestrian and vehicular traffic.The proposed method exploits optical flow as the low level feature and performs integration and clustering to obtain coherent group motion patterns. However, we observe that in crowd video sequences, as well as a variety of other vision applications, the co-occurrence and inter-relation of motion patterns are the main characteristics of group behaviors. In other words, the group behavior of objects is a mixture of individual actions or behaviors in specific geometrical layout and temporal order.We, therefore, propose a new representation for group behaviors of humans using the inter-relation of motion patterns in a scene. The representation is based on bag of visual phrases of spatio-temporal visual words. We present a method to match the high-order spatial layout of visual words that preserve the geometry of the visual words under similarity transformations. To perform the experiments we collected a dataset of group choreography performances from the YouTube website. The dataset currently contains four categories of group dances.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004482, ucf:49317
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004482
-
-
Title
-
Improvements on Instrumentation to Explore the Multidimensionality of Luminescence Spectroscopy.
-
Creator
-
Moore, Anthony, Campiglia, Andres, Chumbimuni Torres, Karin, Harper, James, Rex, Matthew, Lee, Woo Hyoung, University of Central Florida
-
Abstract / Description
-
This dissertation presents experimental and instrumentation developments that take full advantage of the multidimensional nature of line narrowing spectroscopy at liquid nitrogen (77 K) and liquid helium (4.2 K) temperatures. The inconvenience of sample freezing procedures is eliminated with the aid of cryogenic fiber optic probes. Rapid collection of multidimensional data formats such as wavelength time matrices, excitation emission matrices, time-resolved excitation emission matrices and...
Show moreThis dissertation presents experimental and instrumentation developments that take full advantage of the multidimensional nature of line narrowing spectroscopy at liquid nitrogen (77 K) and liquid helium (4.2 K) temperatures. The inconvenience of sample freezing procedures is eliminated with the aid of cryogenic fiber optic probes. Rapid collection of multidimensional data formats such as wavelength time matrices, excitation emission matrices, time-resolved excitation emission matrices and time resolved excitation emission cubes is made possible with the combination of a pulsed tunable dye laser, a spectrograph and an intensifier-charged coupled device. These data formats provide unique opportunities for processing vibrational luminescence data with second order multivariate calibration algorithms. The use of cryogenic fiber optic probes is extended to commercial instrumentation. An attractive feature of spectrofluorimeters with excitation and emission monochromators is the possibility to record synchronous spectra. The advantages of this approach, which include narrowing of spectral bandwidth and simplification of emission spectra, were demonstrated with the direct analysis of highly toxic dibenzopyrene isomers. The same is true for the collection of steady-state fluorescence excitation-emission matrices. These approaches provide a general solution to unpredictable spectral interference, a ubiquitous problem for the analysis of organic pollutants in environmental samples of unknown composition. Since commercial spectrofluorimeters are readily available in most academic institutions, industrial settings and research institutes, the developments presented here should facilitate the widespread application of line-narrowing spectroscopic techniques to the direct determination, no chromatographic separation, of highly toxic compounds in complex environmental matrixes of unknown composition.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0005847, ucf:50934
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005847
-
-
Title
-
Prediction of Optical Properties of Pi-Conjugated Organic Materials for Technological Innovations.
-
Creator
-
Nayyar, Iffat, Masunov, Artem, Saha, Haripada, Stolbov, Sergey, Gesquiere, Andre, University of Central Florida
-
Abstract / Description
-
Organic ?-conjugated solids are promising candidates for new optoelectronic materials. The large body of evidence points at their advantageous properties such as high charge-carrier mobility, large nonlinear polarizability, mechanical flexibility, simple and low cost fabrication and superior luminescence. They can be used as nonlinear optical (NLO) materials with large two-photon absorption (2PA) and as electronic components capable of generating nonlinear neutral (excitonic) and charged ...
Show moreOrganic ?-conjugated solids are promising candidates for new optoelectronic materials. The large body of evidence points at their advantageous properties such as high charge-carrier mobility, large nonlinear polarizability, mechanical flexibility, simple and low cost fabrication and superior luminescence. They can be used as nonlinear optical (NLO) materials with large two-photon absorption (2PA) and as electronic components capable of generating nonlinear neutral (excitonic) and charged (polaronic) excitations. In this work, we investigate the appropriate theoretical methods used for the (a) prediction of 2PA properties for rational design of organic materials with improved NLO properties, and (b) understanding of the essential electronic excitations controlling the energy-transfer and charge-transport properties in organic optoelectronics. Accurate prediction of these electro-optical properties is helpful for structure-activity relationships useful for technological innovations.In Chapter 1 we emphasize on the potential use of the organic materials for these two applications. The 2PA process is advantageous over one-photon absorption for deep-tissue fluorescence microscopy, photodynamic therapy, microfabrication and optical data storage owing to the three-dimensional spatial selectivity and improved penetration depth in the absorbing or scattering media. The design of the NLO materials with large 2PA cross-sections may reduce the optical damage due to the use of the high intensity laser beams for excitation. The organic molecules also possess self-localized excited states which can decay radiatively or nonradiatively to form excitonic states. This suggests the use of these materials in the electroluminescent devices such as light-emitting diodes and photovoltaic cells through the processes of exciton formation or dissociation, respectively. It is therefore necessary to understand ultrafast relaxation processes required in understanding the interplay between the efficient radiative transfer between the excited states and exciton dissociation into polarons for improving the efficiency of these devices. In Chapter 2, we provide the detailed description of the various theoretical methods applied for the prediction as well as the interpretation of the optical properties of a special class of substituted PPV [poly (p-phenylene vinylene)] oligomers. In Chapter 3, we report the accuracy of different second and third order time dependent density functional theory (TD-DFT) formalisms in prediction of the 2PA spectra compared to the experimental measurements for donor-acceptor PPV derivatives. We recommend a posteriori Tamm-Dancoff approximation method for both qualitative and quantitative analysis of 2PA properties. Whereas, Agren's quadratic response methods lack the double excitations and are not suitable for the qualitative analysis of the state-specific contributions distorting the overall quality of the 2PA predictions. We trace the reasons to the artifactual excited states above the ionization threshold. We also study the effect of the basis set, geometrical constraints and the orbital exchange fraction on the 2PA excitation energies and cross-sections. Higher exchange (BMK and M05-2X) and range-separated (CAM-B3LYP) hybrid functionals are found to yield inaccurate predictions both quantitatively and qualitatively. The failure of the exchange-correlation (XC) functionals with correct asymptotic is traced to the inaccurate transition dipoles between the valence states, where functionals with low HF exchange succeed. In Chapter 4, we test the performance of different semiempirical wavefunction theory methods for the prediction of 2PA properties compared to the DFT results for the same set of molecules. The spectroscopic parameterized (ZINDO/S) method is relatively better than the general purpose parameterized (PM6) method but the accuracy is trailing behind the DFT methods. The poor performances of PM6 and ZINDO/S methods are attributed to the incorrect description of excited-to-excited state transition and 2PA energies, respectively. The different semiempirical parameterizations can at best be used for quantitative analysis of the 2PA properties. The ZINDO/S method combined with different orders of multi-reference configuration interactions provide an improved description of 2PA properties. However, the results are observed to be highly dependent on the specific choice for the active space, order of excitation and reference configurations.In Chapter 5, we present a linear response TD-DFT study to benchmark the ability of existing functional models to describe the extent of self-trapped neutral and charged excitations in PPV and its derivative MEH-PPV considered in their trans-isomeric forms. The electronic excitations in question include the lowest singlet (S1) and triplet (T1†) excitons, positive (P+) and negative (P-) polarons and the lowest triplet (T1) states. Use of the long-range-corrected DFT functional, such as LC-wPBE, is found to be crucial in order to predict the physically correct spatial localization of all the electronic excitations in agreement with experiment. The inclusion of polarizable dielectric environment play an important role for the charged states. The particle-hole symmetry is preserved for both the polymers in trans geometries. These studies indicate two distinct origins leading to self-localization of electronic excitations. Firstly, distortion of molecular geometry may create a spatially localized potential energy well where the state wavefunction self-traps. Secondly, even in the absence of geometric and vibrational dynamics, the excitation may become spatially confined due to energy stabilization caused by polarization effects from surrounding dielectric medium.In Chapter 6, we aim to separate these two fundamental sources of spatial localization. We observe the electronic localization of P+ and P- is determined by the polarization effects of the surrounding media and the character of the DFT functional. In contrast, the self-trapping of the electronic wavefunctions of S1 and T1(T1†) mostly follows their lattice distortions. Geometry relaxation plays an important role in the localization of the S1 and T1† excitons owing to the non-variational construction of the excited state wavefunction. While, mean-field calculated P+, P- and T1 states are always spatially localized even in ground state S0 geometry. Polaron P+ and P- formation is signified by the presence of the localized states for the hole or the electron deep inside the HOMO-LUMO gap of the oligomer as a result of the orbital stabilization at the LC-wPBE level. The broadening of the HOMO-LUMO band gap for the T1 exciton compared to the charged states is associated with the inverted bond length alternation observed at this level. The molecular orbital energetics are investigated to identify the relationships between state localization and the corresponding orbital structure.In Chapter 7, we investigate the effect of various conformational defects of trans and cis nature on the energetics and localization of the charged P+ and P- excitations in PPV and MEH-PPV. We observe that the extent of self-trapping for P+ and P- polarons is highly sensitive on molecular and structural conformations, and distribution of atomic charges within the polymers. The particle-hole symmetry is broken with the introduction of trans defects and inclusion of the polarizable environment in consistent with experiment. The differences in the behavior of PPV and MEH-PPV is rationalized based on their orbital energetics and atomic charge distributions. We show these isomeric defects influence the behavior and drift mobilities of the charge carriers in substituted PPVs.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005110, ucf:50722
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005110
-
-
Title
-
Specialty Fiber Lasers and Novel Fiber Devices.
-
Creator
-
Jollivet, Clemence, Schulzgen, Axel, Moharam, Jim, Richardson, Martin, Mafi, Arash, University of Central Florida
-
Abstract / Description
-
At the Dawn of the 21st century, the field of specialty optical fibers experienced a scientific revolution with the introduction of the stack-and-draw technique, a multi-steps and advanced fiber fabrication method, which enabled the creation of well-controlled micro-structured designs. Since then, an extremely wide variety of finely tuned fiber structures have been demonstrated including novel materials and novel designs. As the complexity of the fiber design increased, highly-controlled...
Show moreAt the Dawn of the 21st century, the field of specialty optical fibers experienced a scientific revolution with the introduction of the stack-and-draw technique, a multi-steps and advanced fiber fabrication method, which enabled the creation of well-controlled micro-structured designs. Since then, an extremely wide variety of finely tuned fiber structures have been demonstrated including novel materials and novel designs. As the complexity of the fiber design increased, highly-controlled fabrication processes became critical. To determine the ability of a novel fiber design to deliver light with properties tailored according to a specific application, several mode analysis techniques were reported, addressing the recurring needs for in-depth fiber characterization. The first part of this dissertation details a novel experiment that was demonstrated to achieve modal decomposition with extended capabilities, reaching beyond the limits set by the existing mode analysis techniques. As a result, individual transverse modes carrying between ~0.01% and ~30% of the total light were resolved with unmatched accuracy. Furthermore, this approach was employed to decompose the light guided in Large-Mode Area (LMA) fiber, Photonic Crystal Fiber (PCF) and Leakage Channel Fiber (LCF). The single-mode performances were evaluated and compared. As a result, the suitability of each specialty fiber design to be implemented for power-scaling applications of fiber laser systems was experimentally determined.The second part of this dissertation is dedicated to novel specialty fiber laser systems. First, challenges related to the monolithic integration of novel and complex specialty fiber designs in all-fiber systems were addressed. The poor design and size compatibility between specialty fibers and conventional fiber-based components limits their monolithic integration due to high coupling loss and unstable performances. Here, novel all-fiber Mode-Field Adapter (MFA) devices made of selected segments of Graded Index Multimode Fiber (GIMF) were implemented to mitigate the coupling losses between a LMA PCF and a conventional Single-Mode Fiber (SMF), presenting an initial 18-fold mode-field area mismatch. It was experimentally demonstrated that the overall transmission in the mode-matched fiber chain was increased by more than 11 dB (the MFA was a 250 ?m piece of 50 ?m core diameter GIMF). This approach was further employed to assemble monolithic fiber laser cavities combining an active LMA PCF and fiber Bragg gratings (FBG) in conventional SMF. It was demonstrated that intra-cavity mode-matching results in an efficient (60%) and narrow-linewidth (200 pm) laser emission at the FBG wavelength.In the last section of this dissertation, monolithic Multi-Core Fiber (MCF) laser cavities were reported for the first time. Compared to existing MCF lasers, renown for high-brightness beam delivery after selection of the in-phase supermode, the present new generation of 7-coupled-cores Yb-doped fiber laser uses the gain from several supermodes simultaneously. In order to uncover mode competition mechanisms during amplification and the complex dynamics of multi-supermode lasing, novel diagnostic approaches were demonstrated. After characterizing the laser behavior, the first observations of self-mode-locking in linear MCF laser cavities were discovered.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005354, ucf:50491
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005354
-
-
Title
-
Engineering and Application of Ultrafast Laser Pulses and Filamentation in Air.
-
Creator
-
Barbieri, Nicholas, Richardson, Martin, University of Central Florida
-
Abstract / Description
-
Continuing advances in laser and photonic technology has seen the development of lasers with increasing power and increasingly short pulsewidths, which have become available over an increasing range of wavelengths. As the availability of laser sources grow, so do their applications. To make better use of this improving technology, understanding and controlling laser propagation in free space is critical, as is understanding the interaction between laser light and matter.The need to better...
Show moreContinuing advances in laser and photonic technology has seen the development of lasers with increasing power and increasingly short pulsewidths, which have become available over an increasing range of wavelengths. As the availability of laser sources grow, so do their applications. To make better use of this improving technology, understanding and controlling laser propagation in free space is critical, as is understanding the interaction between laser light and matter.The need to better control the light obtained from increasingly advanced laser sources leads to the emergence of beam engineering, the systematic understanding and control of light through refractive media and free space. Beam engineering enables control over the beam shape, energy and spectral composition during propagation, which can be achieved through a variety of means. In this dissertation, several methods of beam engineering are investigated. These methods enable improved control over the shape and propagation of laser light. Laser-matter interaction is also investigated, as it provides both a means to control the propagation of pulsed laser light through the atmosphere, and provides a means to generation remote sources of radiation.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0004650, ucf:49881
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004650
Pages