Current Search: polarization (x)
View All Items
Pages
- Title
- SPECTRAL SIGNATURE MODIFICATION BY APPLICATION OF INFRARED FREQUENCY-SELECTIVE SURFACES.
- Creator
-
Monacelli, Brian, Boreman, Glenn, University of Central Florida
- Abstract / Description
-
It is desirable to modify the spectral signature of a surface, particularly in the infrared (IR) region of the electromagnetic spectrum. To alter the surface signature in the IR, two methods are investigated: thin film application and antenna array application. The former approach is a common and straightforward incorporation of optically-thin film coatings on the surface designated for signature modification. The latter technique requires the complex design of a periodic array of passive...
Show moreIt is desirable to modify the spectral signature of a surface, particularly in the infrared (IR) region of the electromagnetic spectrum. To alter the surface signature in the IR, two methods are investigated: thin film application and antenna array application. The former approach is a common and straightforward incorporation of optically-thin film coatings on the surface designated for signature modification. The latter technique requires the complex design of a periodic array of passive microantenna elements to cover the surface in order to modify its signature. This technology is known as frequency selective surface (FSS) technology and is established in the millimeter-wave spectral regime, but is a challenging technology to scale for IR application. Incorporation of thin films and FSS antenna elements on a surface permits the signature of a surface to be changed in a deterministic manner. In the seminal application of this work, both technologies are integrated to comprise a circuit-analog absorbing IR FSS. The design and modeling of surface treatments are accomplished using commercially-available electromagnetic simulation software. Fabrication of microstructured antenna arrays is accomplished via microlithographic technology, particularly using an industrial direct-write electron-beam lithography system. Comprehensive measurement methods are utilized to study the patterned surfaces, including infrared spectral radiometry and Fourier-transform infrared spectrometry. These systems allow for direct and complementary spectral signature measurements--the radiometer measures the absorption or emission of the surface, and the spectrometer measures its transmission and reflection. For the circuit-analog absorbing square-loop IR FSS, the spectral modulation in emission is measured to be greater than 85% at resonance. Other desirable modifications of surface signature are also explored; these include the ability to filter radiation based on its polarization orientation and the ability to dynamically tune the surface signature. An array of spiral FSS elements allows for circular polarization conditioning. Three techniques for tuning the IR FSS signature via voltage application are explored, including the incorporation of a pn junction substrate, a piezoelectric substrate and a liquid crystal superstrate. These studies will ignite future explorations of IR FSS technology, enabling various unique applications.
Show less - Date Issued
- 2005
- Identifier
- CFE0000589, ucf:46471
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000589
- Title
- THE FORGOTTEN THIRD BRANCH: THE SUPREME COURT, PUBLIC OPINION, AND THE MEDIA.
- Creator
-
Pitchman, Adrien, Schmidt, Cynthia, University of Central Florida
- Abstract / Description
-
The three branches of government rely on public engagement for the prosperity of the nation. Moreover, informed public opinion is a fundamental tenant of democracy. With that in mind, this paper aims to explore the relationship between the Judicial Branch and the public. Specifically, this paper examines and questions the Supreme Court's efficacy communicating with the public. American constituents are inundated on a daily basis by the clamor of D.C. politics. The twenty four hour news cycle...
Show moreThe three branches of government rely on public engagement for the prosperity of the nation. Moreover, informed public opinion is a fundamental tenant of democracy. With that in mind, this paper aims to explore the relationship between the Judicial Branch and the public. Specifically, this paper examines and questions the Supreme Court's efficacy communicating with the public. American constituents are inundated on a daily basis by the clamor of D.C. politics. The twenty four hour news cycle has given way to politicized headlines and exaggerated pundit commentary on contentious national issues. In a technological age where information is instant and the public has become accustomed to soundbites for education, the Supreme Court is left out of place. Both the Executive Branch and Legislative Branch converse directly with the public when necessary. Politicians frequently address their constituents or discuss complicated issues with voters first hand. However, the Supreme Court has rejected this strategy and instead relies almost exclusively on the press to relay their decisions. The judicial branch is the only third of our government without constant communication to the American people. As a result, the judiciary is relatively ignored by its citizens. By discussing a number of landmark cases since the turn of the century, this paper aims to analyze how those decisions were both announced to the public by the media and how the public received them. The Court has certainly adopted the press as an agent of communication. But is the media truly the proper outlet for the Court's rulings?
Show less - Date Issued
- 2015
- Identifier
- CFH0004771, ucf:45392
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004771
- Title
- DESIGN AND CHARACTERIZATION OF NOVELDEVICES FOR NEW GENERATION OF ELECTROSTATICDISCHARGE (ESD) PROTECTION STRUCTURES.
- Creator
-
SALCEDO, Javier, Liou, Juin, University of Central Florida
- Abstract / Description
-
The technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications' performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the...
Show moreThe technology evolution and complexity of new circuit applications involve emerging reliability problems and even more sensitivity of integrated circuits (ICs) to electrostatic discharge (ESD)-induced damage. Regardless of the aggressive evolution in downscaling and subsequent improvement in applications' performance, ICs still should comply with minimum standards of ESD robustness in order to be commercially viable. Although the topic of ESD has received attention industry-wide, the design of robust protection structures and circuits remains challenging because ESD failure mechanisms continue to become more acute and design windows less flexible. The sensitivity of smaller devices, along with a limited understanding of the ESD phenomena and the resulting empirical approach to solving the problem have yielded time consuming, costly and unpredictable design procedures. As turnaround design cycles in new technologies continue to decrease, the traditional trial-and-error design strategy is no longer acceptable, and better analysis capabilities and a systematic design approach are essential to accomplish the increasingly difficult task of adequate ESD protection-circuit design. This dissertation presents a comprehensive design methodology for implementing custom on-chip ESD protection structures in different commercial technologies. First, the ESD topic in the semiconductor industry is revised, as well as ESD standards and commonly used schemes to provide ESD protection in ICs. The general ESD protection approaches are illustrated and discussed using different types of protection components and the concept of the ESD design window. The problem of implementing and assessing ESD protection structures is addressed next, starting from the general discussion of two design methods. The first ESD design method follows an experimental approach, in which design requirements are obtained via fabrication, testing and failure analysis. The second method consists of the technology computer aided design (TCAD)-assisted ESD protection design. This method incorporates numerical simulations in different stages of the ESD design process, and thus results in a more predictable and systematic ESD development strategy. Physical models considered in the device simulation are discussed and subsequently utilized in different ESD designs along this study. The implementation of new custom ESD protection devices and a further integration strategy based on the concept of the high-holding, low-voltage-trigger, silicon controlled rectifier (SCR) (HH-LVTSCR) is demonstrated for implementing ESD solutions in commercial low-voltage digital and mixed-signal applications developed using complementary metal oxide semiconductor (CMOS) and bipolar CMOS (BiCMOS) technologies. This ESD protection concept proposed in this study is also successfully incorporated for implementing a tailored ESD protection solution for an emerging CMOS-based embedded MicroElectroMechanical (MEMS) sensor system-on-a-chip (SoC) technology. Circuit applications that are required to operate at relatively large input/output (I/O) voltage, above/below the VDD/VSS core circuit power supply, introduce further complications in the development and integration of ESD protection solutions. In these applications, the I/O operating voltage can extend over one order of magnitude larger than the safe operating voltage established in advanced technologies, while the IC is also required to comply with stringent ESD robustness requirements. A practical TCAD methodology based on a process- and device- simulation is demonstrated for assessment of the device physics, and subsequent design and implementation of custom P1N1-P2N2 and coupled P1N1-P2N2//N2P3-N3P1 silicon controlled rectifier (SCR)-type devices for ESD protection in different circuit applications, including those applications operating at I/O voltage considerably above/below the VDD/VSS. Results from the TCAD simulations are compared with measurements and used for developing technology- and circuit-adapted protection structures, capable of blocking large voltages and providing versatile dual-polarity symmetric/asymmetric S-type current-voltage characteristics for high ESD protection. The design guidelines introduced in this dissertation are used to optimize and extend the ESD protection capability in existing CMOS/BiCMOS technologies, by implementing smaller and more robust single- or dual-polarity ESD protection structures within the flexibility provided in the specific fabrication process. The ESD design methodologies and characteristics of the developed protection devices are demonstrated via ESD measurements obtained from fabricated stand-alone devices and on-chip ESD protections. The superior ESD protection performance of the devices developed in this study is also successfully verified in IC applications where the standard ESD protection approaches are not suitable to meet the stringent area constraint and performance requirement.
Show less - Date Issued
- 2006
- Identifier
- CFE0001213, ucf:46942
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001213