Current Search: treatments (x)
View All Items
Pages
- Title
- Remediation of Polychlorinated Biphenyl (PCB) Contaminated Building Materials Using Non-metal and Activated Metal Treatment Systems.
- Creator
-
Legron-Rodriguez, Tamra, Yestrebsky, Cherie, Clausen, Christian, Elsheimer, Seth, Sigman, Michael, Chopra, Manoj, Quinn, Jacqueline, University of Central Florida
- Abstract / Description
-
PCBs are recalcitrant compounds of no known natural origin that persist in the environment despite their ban by the United States Environmental Protection Agency in 1979 due to negative health effects. Transport of PCBs from elastic sealants into concrete, brick, and granite structures has resulted in the need for a technology capable of removing these PCBs from the materials. This research investigated the use of a nonmetal treatment system (NMTS) and an activated metal treatment system ...
Show morePCBs are recalcitrant compounds of no known natural origin that persist in the environment despite their ban by the United States Environmental Protection Agency in 1979 due to negative health effects. Transport of PCBs from elastic sealants into concrete, brick, and granite structures has resulted in the need for a technology capable of removing these PCBs from the materials. This research investigated the use of a nonmetal treatment system (NMTS) and an activated metal treatment system (AMTS) for the remediation and degradation of PCBs from concrete, brick, and granite affixed with PCB-laden caulking. The adsorption of PCBs onto the components of concrete and the feasibility of ethanol washing were also investigated.NMTS is a sorbent paste containing ethanol, acetic acid, and fillers that was developed at the University of Central Florida Environmental Chemistry Laboratory for the in situ remediation of PCBs. Combining NMTS with magnesium results in an activated treatment system used for reductive dechlorination of PCBs. NMTS was applied to laboratory-prepared concrete as well as field samples by direct contact as well as by a novel sock-type delivery. The remediation of PCBs from field samples using NMTS and AMTS resulted in a 33-98% reduction for concrete, a 65-70% reduction for brick, and an 89% reduction in PCB concentration for granite. The limit of NMTS for absorption of Aroclor 1254 was found to be roughly 22,000 mg Aroclor 1254 per kg of treatment system or greater. The activated treatment system resulted in a 94% or greater degradation of PCBs after seven days with the majority of degradation occurring in the first 24 hours. The adsorption of PCBs to individual concrete components (hydrated cement, sand, crushed limestone, and crushed granite) was found to follow the Freundlich isotherm model with greater adsorption to crushed limestone and crushed granite compared to hydrated cement and sand. Ethanol washing was shown to decrease the concentration of laboratory-prepared concrete by 68% and the concentration of PCBs in the ethanol wash were reduced by 77% via degradation with an activated magnesium system.
Show less - Date Issued
- 2013
- Identifier
- CFE0005197, ucf:50625
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005197
- Title
- A study on the plasticity and fracture of AISI 4340 steel under different loading conditions considering heat treatment and micromechanics.
- Creator
-
Ghazali, Sami, Bai, Yuanli, Kassab, Alain, Kwok, Kawai, Nam, Boo Hyun, University of Central Florida
- Abstract / Description
-
Accurate predictions of material strength under different loading conditions with large plastic deformation and ductile fracture are of great importance. This dissertation aims to develop an essential understanding of ductile fracture of AISI 4340 steel alloy using both empirical and micromechanics based models. For this purpose, 29 specimens of different geometries with different heat-treatments were designed to investigate the effects of stress states. These specimens are: (a) 13 round bars...
Show moreAccurate predictions of material strength under different loading conditions with large plastic deformation and ductile fracture are of great importance. This dissertation aims to develop an essential understanding of ductile fracture of AISI 4340 steel alloy using both empirical and micromechanics based models. For this purpose, 29 specimens of different geometries with different heat-treatments were designed to investigate the effects of stress states. These specimens are: (a) 13 round bars with different notches (axial symmetric tension); (b) 13 flat grooved specimens with different grooves; (c) 3 small round cylinders. Mechanical tests up to fracture were conducted on these specimens to characterize the influence of hydrostatic stress and Lode angle on material plasticity and fracture. Scanning electron microscopy (SEM) observations were performed on both original and fractured specimens to investigate different micromechanical revelations and features. The plasticity model with pressure and Lode angle effects (PPL model) and the modified Mohr-Coulomb (MMC) fracture criterion were used to predict plastic flow and fracture initiation behaviors under different loading conditions in finite element simulations. A model optimization method using ISIGHT was set up to achieve simulation results that were well correlated with experimental data. The effects of heat-treatment on material strength and ductility of AISI 4340 steel were also discussed. This work was further carried onto the microvoids based metal plasticity theory. The well-known Gurson-Tvergaard-Needleman (GTN) model was calibrated for AISI 4340 steel. It is found that the GTN model is not sufficient in simulating test data for the 16 Rockwell hardness plane strain specimens. Therefore, The GTN model is modified to include the Lode angle dependence on matrix material plasticity. It is also found that using afixed or constant microvoid volume fraction at failure (ff) for all loading conditions is inadequate. Following a similar derivation of the MMC fracture model, the microvoid volume fraction at failure (ff) becomes a function of both stress triaxiality and Lode angle. This new criterion is named (GTN-MMC). The proposed plasticity and fracture models were implemented into ABAQUS through a user-defined material subroutine (VUMAT) for FE simulations. Good correlations were achieved between experimental results and numerical simulations
Show less - Date Issued
- 2018
- Identifier
- CFE0007004, ucf:52026
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007004
- Title
- REMEDIATION OF HEAVY METAL CONTAMINATION IN SEDIMENTS: APPLICATION OF IN SITU TREATMENT UTILIZING EMULSIFIED LIQUID MEMBRANE AND ZERO-VALENT METAL TECHNOLOGIES.
- Creator
-
Maxwell, Deborah, Clausen, Christian, University of Central Florida
- Abstract / Description
-
Heavy metal contamination of soils, sediments and groundwater presents an ongoing source of hazardous and persistent environmental pollution. How best to remediate these contaminants is the impetus of continuing research efforts. Methods include containment, ex situ and in situ techniques. A successful in situ method utilizing a combination of emulsified liquid membranes, ELM, and zero-valent metal, ZVM, and bimetals has demonstrated impressive heavy metal reduction in 100 ppm solutions of Cd...
Show moreHeavy metal contamination of soils, sediments and groundwater presents an ongoing source of hazardous and persistent environmental pollution. How best to remediate these contaminants is the impetus of continuing research efforts. Methods include containment, ex situ and in situ techniques. A successful in situ method utilizing a combination of emulsified liquid membranes, ELM, and zero-valent metal, ZVM, and bimetals has demonstrated impressive heavy metal reduction in 100 ppm solutions of Cd, Cu, Ni, Pb, Cr and U. This promising in situ method has been employed by the Industrial Chemistry Laboratory at the University of Central Florida and it has demonstrated considerable success in treating several environmental threats. Contaminated soils, surfaces, sediments and groundwater with offending agents such as trichloroethene, polychorobiphenyls and heavy metals have been treated utilizing emulsified liquid membrane systems containing zero-valent iron or bimetal particles. In vial studies, lead spiked sediments have shown repeatable 60% removal of lead after seven days of treatment. A persistent pattern emerged at ten days whereupon remediation levels began to drop. The current study was established to determine the reason for the decline at ten days and beyond. Questions addressed: Does the formation of an impeding oxide layer diminish the remediation capacity of the iron/magnesium system? Does the emulsion reach a maximum capacity to withdraw the contaminant? Do the soil components or the soil structure interfere with the access to the contaminant? This study has yielded insight into the reasons emulsified liquid membrane systems containing zero-valent metals achieved maximum lead removal at day seven, and thereafter begin to lose their effectiveness. A three part study was implemented to address and to answer the three questions pertaining to the consistent pattern of diminishing remediation levels exhibited at day ten and beyond. Initially, from Study I results it appeared that the formation of an impeding oxide layer on the bi-metal which was inside the emulsion droplet and which plated or precipitated with the lead was not occurring at day ten. Results indicated that the iron/magnesium was still capable of removing lead. Furthermore, from Study II results the emulsion dose injected appeared adequate to remove the lead, meaning that the emulsion had not reached its maximum capacity for remediation. The emulsion dose was not a limiting factor. Lastly, Study III results seemed to indicate that the drop in remediation after day seven pertained to the soil structure. There appeared to be some merit to the idea that with aging of the sediment, the lead was diffusing and migrating to some inaccessible interior sites within the sediment particles. Additionally, indications from day ten and day fourteen delineated that a second emulsion dose injection might restore lead removal levels to approach those first observed at day seven and consequently be a useful field application. In order to explore the effectiveness of injecting a second dose of emulsion, another vial study was implemented. The typical pattern of observing sixty percent maximum lead removal at day seven was observed. In separate groups, a second injection of emulsion was added at day five, and then for another vial series, a second dose was added at day seven. The second emulsion dose treatment for either day five or day seven did not yield any increases in percent lead removal. Another theory emerged after viewing micrographs of recovered iron/magnesium compared with fresh ball-milled bimetal. In addition, scanning electron microscopy appeared to confirm the explanation that the emulsified zero-valent metal system might be compromised after day seven. This would lead to exposure of the iron/magnesium to the air and the elements. Corrosion of the bimetal might be occurring. With time, release of the plated or precipitated lead back into the sediment mixture could follow. The results of Study I had led to the conclusion that an impeding oxide layer had not formed; however, this conclusion may have been premature because the recovered iron/magnesium was exposed to lead solution in the vial study. Perhaps if the recovered iron/magnesium was inserted back into an emulsion and injected into lead spiked sediments the percent lead removed might give a more accurate picture of the iron/magnesium's capability to continue performing remediation. Remediation of sediments contaminated with lead is a complicated task because of the complex nature of sediment components. Emulsified liquid membranes utilizing zero-valent bimetals has repeatedly demonstrated impressive results at day seven; however, this treatment method is not without its limitations. Optimal results appear to be gained at day seven after emulsion injection. The bimetal and plated or precipitated lead must be removed at that point; otherwise the effective remediation of the contaminant is progressively reversed.
Show less - Date Issued
- 2007
- Identifier
- CFE0001786, ucf:47274
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001786
- Title
- ANALYSIS OF THE PATHOMECHANISM OF MIGRAINES WITH A FOCUS ON CURRENT TREATMENT PLANS AND THE ROLE OF THE NEUROPEPTIDE CGRP.
- Creator
-
Qureshi, Marvi, Samsam, Mohtashem, University of Central Florida
- Abstract / Description
-
Migraines are a type of headache that specifically act on only one side of the head, although about 30% of patients with migraine may experience a bilateral headache. Migraine is a brain disorders that typically involve issues of the typical sensory processing that takes place in the brainstem. Possible causation has been linked to issues in blood vessels, blood flow, and oxygen levels in the brain. Migraine can be described in three phases, and common throughout the three phases is the...
Show moreMigraines are a type of headache that specifically act on only one side of the head, although about 30% of patients with migraine may experience a bilateral headache. Migraine is a brain disorders that typically involve issues of the typical sensory processing that takes place in the brainstem. Possible causation has been linked to issues in blood vessels, blood flow, and oxygen levels in the brain. Migraine can be described in three phases, and common throughout the three phases is the importance of the neuropeptide CGRP and its role in migraine pathogenesis. CGRP increases in plasma have been linked to migraine headaches, and specific treatment plans have been tailored to account for this. CGRP is a vasodilator that causes dilation of cranial blood vessels and can lead to possible neurogenic inflammation in the periphery of its release while activating the pain pathway in the brainstem. The primary treatment for migraines is currently drugs from the triptan family and NSAIDs, as well as prophylactic drugs including antiepileptic drugs, beta-blockers, and Ca2+ channel blockers. The experiment conducted for this project aimed to determine the effects of a specific CGRP polyclonal antibody and CGRP receptor antagonist when it is with capsaicin, which stimulates sensory nerves. In an ex-vivo experiment using cell culture medium, the dura mater of mice is given either rabbit polyclonal antibody or a CGRP receptor antagonist or both, and then is challenged with capsaicin. CGRP positive (expressing) fibers and nerve terminals are examined under a fluorescent microscope in the dura mater of the mice.
Show less - Date Issued
- 2015
- Identifier
- CFH0004823, ucf:45442
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004823
- Title
- THE DUALITY OF FLORIDA'S CRIMINAL PRETRIAL DIVERSION PROGRAMS:A SEPARATE TREATMENT COURT FOR VETERANS.
- Creator
-
Van Zandt, David, Milon, Abby, University of Central Florida
- Abstract / Description
-
This thesis examines two issues facing Florida's young and fledgling Veteran Treatment Courts. First is whether or not a separate hybrid court of already existing mental health and drug courts is needed exclusively for veterans; and second, funding and efficiency of such courts as compared to traditional criminal institutions.
- Date Issued
- 2012
- Identifier
- CFH0004189, ucf:44843
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004189
- Title
- Evaluating the Integration of Chlorine Dioxide into a Coagulation, Sedimentation, and Filtration Process Treating Surface Water.
- Creator
-
Coleman, Martin, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
Methods of optimizing the coagulation, flocculation, sedimentation, and filtration (CSF) process at a conventional surface water treatment plant (WTP) were conducted to investigate opportunities for the reduction of disinfection by-product (DBP) precursor material. The research had two primary components: (1) optimize coagulant dosage and associated operating pH and (2) investigate pretreatment oxidation with chlorine dioxide (ClO2) and potassium permanganate (KMnO4). To accomplish the first...
Show moreMethods of optimizing the coagulation, flocculation, sedimentation, and filtration (CSF) process at a conventional surface water treatment plant (WTP) were conducted to investigate opportunities for the reduction of disinfection by-product (DBP) precursor material. The research had two primary components: (1) optimize coagulant dosage and associated operating pH and (2) investigate pretreatment oxidation with chlorine dioxide (ClO2) and potassium permanganate (KMnO4). To accomplish the first component, jar tests were conducted at various pH and aluminum sulfate (alum) dosages to model current and potential treatment conditions during the CSF process at a WTP. Isopleths were developed to examine the removal efficiencies of turbidity and natural organic matter (NOM). NOM is a DBP precursor material and was represented by non-purgeable dissolved organic carbon (DOC) throughout the research. Isopleths indicated that at pH 6.2 and a corresponding alum dosage of 20 mg/L (control condition), turbidity and DOC were reduced by 90 and 35 percent, respectively. However, at pH 5.5 and 30 mg/L alum dosage, turbidity removal decreased to 80 percent whereas, DOC removal improved to 50 percent. Jar testing was conducted to evaluate differences in the use of KMnO4 and ClO2 as a pretreatment chemical to observe the reduction of DBP precursor material (i.e., NOM), dissolved iron, and dissolved manganese. Addition of ClO2 was able to reduce total trihalomethanes and haloacetic acid formation potentials (168-hours) up to 40 percent and 15 percent, respectively, and was dependent on chlorine dioxide generation method, dosage, and raw water characteristics. Chlorine dioxide also was shown to remove iron and manganese at levels greater than 99 percent.
Show less - Date Issued
- 2018
- Identifier
- CFE0007396, ucf:52078
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007396
- Title
- Long-term Carbon and Copper Impact on Nutrient Removal via Green Sorption Media in Dynamic Linear Ditch Environments.
- Creator
-
Ordonez, Diana, Chang, Ni-bin, Randall, Andrew, Sadmani, A H M Anwar, University of Central Florida
- Abstract / Description
-
Nutrient-laden stormwater runoff causes environmental and ecological impacts on receiving water bodies. Biosorption Activated Media (BAM) composed of the sand, tire crumb, and clay have been implemented in stormwater best management practices due to its ability to efficiently remove nutrients from stormwater runoff, such as in roadside linear ditches, via unique chemophysical and microbiological processes. In this study, a set of fixed-bed columns were set up to simulate some external forces...
Show moreNutrient-laden stormwater runoff causes environmental and ecological impacts on receiving water bodies. Biosorption Activated Media (BAM) composed of the sand, tire crumb, and clay have been implemented in stormwater best management practices due to its ability to efficiently remove nutrients from stormwater runoff, such as in roadside linear ditches, via unique chemophysical and microbiological processes. In this study, a set of fixed-bed columns were set up to simulate some external forces in roadside linear ditches and examine how these external forces affect the performance of BAM. In our experiment, scenario 1 simulates the impact that animals such as tortoises, moles and ants produce conduits on the top layer of BAM. Scenario 2 simulates the presence of animals on BAM, together with external compaction. Finally, scenario 3 simulates external compaction such as traffic compaction alone. Furthermore, two baseline conditions were included to sustain the impact assessment of these three scenarios, respectively. They are the long-term presence of carbon in stormwater as carbon can be transported by stormwater runoff from neighboring crop fields, and the long-term presence of copper ions in stormwater as copper depositions can also be found because of electrical wiring, roofing, stormwater ponds disinfection and automobile brake pads in transportation networks. This systematic assessment encompasses some intertwined field complexity in real world systems driven by different hydraulic conditions, microbial ecology, Dissolved Organic Nitrogen (DON) reshape/removal, and long-term addition of carbon and copper (alone) on the effectiveness of total nitrogen removal. The removal efficiencies are substantially linked to varying microbial processes including mineralization, ammonification, nitrification, denitrification, and even dissimilatory nitrate reduction to ammonium, each of which is controlled by different dominant microbial species. The identification of DON compounds at the molecular level was done via a Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-IR-MS) whereas the quantitation of microbial species was done by using quantitative Polymerase Chain Reaction (qPCR). The results from the interactions between microbial ecology and DON decomposition were compared to the external forces and baseline conditions to obtain a holistic understanding of the removals efficiencies of total nitrogen. With the aid of qPCR and FT-IR-MS, this study concluded that the long-term presence of carbon is beneficial for nutrient removal whereas the long-term copper addition inhibits nutrient removal.
Show less - Date Issued
- 2019
- Identifier
- CFE0007847, ucf:52816
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007847
- Title
- The relationship between caregiver intimate partner violence, posttraumatic stress, child cognitive self-development, and treatment attrition among child sexual abuse victims.
- Creator
-
Delorenzi, Leigh, Daire, Andrew, Young, Mark, Lambie, Glenn, Abel, Eileen, University of Central Florida
- Abstract / Description
-
Child sexual abuse (CSA) is a worldwide problem, with two-thirds of all cases going unreported. A wealth of research over the last 30 years demonstrates the negative emotional, cognitive, physical, spiritual, academic, and social effects of CSA. As a result, researchers and mental health professionals frequently attempt to measure the efficacy of treatment modalities in order to assess which treatments lead to better outcomes. However, in order to effectively study treatment outcomes,...
Show moreChild sexual abuse (CSA) is a worldwide problem, with two-thirds of all cases going unreported. A wealth of research over the last 30 years demonstrates the negative emotional, cognitive, physical, spiritual, academic, and social effects of CSA. As a result, researchers and mental health professionals frequently attempt to measure the efficacy of treatment modalities in order to assess which treatments lead to better outcomes. However, in order to effectively study treatment outcomes, researchers must be able to track the status of child functioning and symptomology before, during, and after treatment. Because high levels of treatment attrition exist among CSA victims, researchers are unable to effectively study outcomes due to large losses in research participants, loss of statistical power, and threats to external validity (Kazdin, 1990). Moreover, due to the high prevalence of concurrent family violence, caregivers with intimate partner violence are more than twice as likely to have children who are also direct victims of abuse (Kazdin, 1996). Caregivers ultimately make the decisions regarding whether or not a child stays in treatment, and therefore, it is important to examine the influence of both parent factors (e.g., intimate partner violence) and child factors (e.g., traumatization and/or disturbances in cognitive self-development) on treatment attrition. This two-pronged approach of examining both child and family characteristics simultaneously with attrition patterns offers a more complete picture for the ways concurrent family violence influences treatment than looking at child and caregiver factors separately.The purpose of this study was to investigate the relationships between caregiver intimate partner violence, child posttraumatic stress (Trauma Symptom Checklist for Children [TSCC]; Briere, 1996), child cognitive self-development (Trauma and Attachment Belief Scale [TABS]; Pearlman, 2003), and treatment attrition. The statistical analyses in this study included (a) Logistic Regression, (b) Poisson Regression, and (c) Chi-square Test for Independence. Elevated TSCC subscale scores in posttraumatic stress predicted both an increased number of sessions attended and increased number of sessions missed. Elevated TABS subscale scores in self-trust predicted an increased number of sessions attended and decreased number of sessions missed. Elevated TABS subscale scores of other-intimacy and self-control predicted an increased number of sessions missed. Moreover, the presence of past or current caregiver intimate partner violence predicted a decrease in number of sessions attended. While no relationship existed between child posttraumatic stress or cognitive self-development and whether a child graduated or prematurely terminated from treatment, children with parents who confirmed past or current intimate partner violence were 2.5 times more likely to prematurely terminate from treatment.
Show less - Date Issued
- 2012
- Identifier
- CFE0004369, ucf:49439
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004369
- Title
- NUTRIENT AND PATHOGEN REMOVAL IN A SUBSURFACE UPFLOW WETLAND SYSTEM USING GREEN SORPTION MEDIA.
- Creator
-
Xuan, Zhemin, Chang, Ni-Bin, University of Central Florida
- Abstract / Description
-
Due to environmental health and nutrient impact concerns, the conventional on-site sewage collection, treatment, and disposal systems are no longer able to meet the nutrient reduction requirements for wastewater effluent and may represent a large fraction of pollutant loads. The loads include not only nitrogen (N) and phosphorus (P), but also pathogens such as fecal coliform and E. coli which indicate the presence of other disease-causing bacteria flowing into aquatic system that adversely...
Show moreDue to environmental health and nutrient impact concerns, the conventional on-site sewage collection, treatment, and disposal systems are no longer able to meet the nutrient reduction requirements for wastewater effluent and may represent a large fraction of pollutant loads. The loads include not only nitrogen (N) and phosphorus (P), but also pathogens such as fecal coliform and E. coli which indicate the presence of other disease-causing bacteria flowing into aquatic system that adversely affect public health. A subsurface upflow wetland, which is an effective small-scale wastewater treatment system with low energy and maintenance requirements and operational costs, fits the current nutrient and pathogen removal situation having received wide attention throughout the world. Within this research study, a subsurface upflow wetland system (SUW), including four parallel SUW (three planted versus one unplanted), were constructed as a key component of the septic tank system receiving 454 liters per day (120 GPD) influent using the green sorption media along with selected plant species. It was proved effective in removing both nutrients and pathogens. During a one month test run, the planted wetlands achieved a removal efficiency of 84.2%, 97.3 %, 98.93 % and 99.92%, compared to the control wetland, 10.5%, 85.7 %, 99.74 % and 100.0 %, in total nitrogen (TN), total phosphorus (TP), fecal coli and E.Coli, respectively. Denitrification was proved to be the dominant pathway for removing N as evidenced by the mass balance and real-time PCR analyses. A simplified compartmental dynamics simulation model of constructed subsurface upflow wetlands was also developed to provide a dependable reference and tool for design of constructed subsurface upflow wetland.
Show less - Date Issued
- 2009
- Identifier
- CFE0002967, ucf:47964
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002967
- Title
- Evaluation of Intestinal Microbial Diversity and a New Antibiotic Regimen in Crohn's Disease Patients.
- Creator
-
Alcedo, Karel, Naser, Saleh, Cheng, Zixi, Siddiqi, Shadab, University of Central Florida
- Abstract / Description
-
Crohn's disease (CD) is a chronic granulomatous inflammatory bowel disease involving Mycobacterium avium subspecies paratuberculosis (MAP). Other microorganisms such as adherent-invasive Escherichia coli (AIEC) have also been proposed in CD association. To date, only one study investigated both MAP and AIEC simultaneously using peripheral blood but not in affected intestinal tissues. A standardized and effective antibiotic therapy against MAP and/or AIEC is needed for better treatment. Three...
Show moreCrohn's disease (CD) is a chronic granulomatous inflammatory bowel disease involving Mycobacterium avium subspecies paratuberculosis (MAP). Other microorganisms such as adherent-invasive Escherichia coli (AIEC) have also been proposed in CD association. To date, only one study investigated both MAP and AIEC simultaneously using peripheral blood but not in affected intestinal tissues. A standardized and effective antibiotic therapy against MAP and/or AIEC is needed for better treatment. Three antibiotic drugs (-) Clarithromycin (CLA), Rifabutin (RIF), and Clofazimine (CLO) have been used to treat CD patients suspected with MAP infection. However, the outcome has been controversial. The treatment dosage is high, the duration is long, and the reported drug side effects resulted in patient non-compliance; therefore, a lower and effective drug dosage is needed. In this study, we developed two aims 1) to evaluate RHB 104, a drug formula comprised of low dosages of CLA, RIF, and CLO, against clinical MAP strains in-vitro using fluorescence quenching method, and 2) to develop a fluorescence in-situ hybridization method to detect both MAP and AIEC simultaneously in intestinal tissues of CD patients. A total of 16 clinical MAP strains and 19 non-MAP strains were tested against varied concentrations of RHB 104, CLA, RIF, and CLO. Although the MIC for all drugs ranged between 0.5-20 ?g/ml, the MIC for RHB 104 was significantly lower against most MAP strains. The effect of RHB 104 against MAP was bactericidal. Unlike RHB-104 formula, CLA, CLO, and RIF dosage similar to those in RHB-104 did not inhibit MAP growth when trialed individually and in dual-drug combinations. The data illustrated the presence of synergistic anti-MAP activity of low dosage of the three antibiotics in RHB-104. We also developed a rapid and sensitive multicolor in-situ hybridization technique that can detect MAP and AIEC using tagged-oligonucleotide probes. Non-pathogenic Escherichia coli (npEC) was used as a control for the study. Specifically, cultured MAP and npEC were fixed and hybridized with MAP488 and EC647 probes, respectively. Confocal laser scanning microscope (CLSM) revealed specific signals at 488nm for MAP and 647nm for npEC, indicating probe binding to each bacteria. This was confirmed with hybridization of MAP with EC647 and npEC with MAP488 resulting in absence of signals. Intestinal tissue samples from 9 CD patients were then analyzed using our technique. Preliminary data indicated positive results in 6/6 samples for MAP, 6/6 for npEC, 3/3 for AIEC, and 2/2 for both MAP and AIEC with MAP being more dominant. This protocol shortened the FISH procedure from multiple days to short-hours. The protocol allows the investigation of more than one pathogen simultaneously in the same clinical sample. A quantitative measurement of the signals is needed.
Show less - Date Issued
- 2015
- Identifier
- CFE0005917, ucf:50831
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005917
- Title
- Anthropogenic Organic Chemical Removal from a Surficial Groundwater and Mass Transfer Modeling in a Nanofiltration Membrane Process.
- Creator
-
Jeffery, Samantha, Duranceau, Steven, Lee, Woo Hyoung, Sadmani, A H M Anwar, Yestrebsky, Cherie, University of Central Florida
- Abstract / Description
-
This dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine...
Show moreThis dissertation reports on research related to trace organic compounds (TrOCs) in surficial groundwater supplies and their subsequent removal from nanofiltration (NF) membranes. The research was conducted along coastal South Florida in cooperation with the Town of Jupiter Water Utilities, Jupiter, FL (Town). The focus of the research was to determine the extent of reclaimed water impacts on surficial groundwater supplies and subsequent effects on the Town's NF water treatment plant. Routine monitoring of fourteen TrOCs in reclaimed water and at the water treatment facility revealed varying degrees of TrOC detection in the environment. Certain TrOCs, including caffeine and DEET, were detected in a majority of the water sampling locations evaluated in this work. However, subsequent dilution with highly-treated reverse osmosis (RO) permeate from alternative supplies resulted in TrOCs below detection limits in potable water at the point-of-entry (POE). Pilot testing was employed to determine the extent of TrOC removal by NF. Prior to evaluating TrOC removal, hydraulic transients within the pilot process were first examined to determine the required length of time the pilot needed to reach steady-state. The transient response of a center-port NF membrane process was evaluated using a step-input dose of a sodium chloride solution. The pilot was configured as a two-stage, split-feed, center-exit, 7:2 pressure vessel array process, where the feed water is fed to both ends of six element pressure vessels, and permeate and concentrate streams are collected after only three membrane elements. The transient response was described as a log-logistic system with a maximum delay time of 285 seconds for an 85% water recovery and 267 gallon per minute feed flowrate.Eleven TrOC pilot unit experiments were conducted with feed concentrations ranging from 0.52 to 4,500 ?g/L. TrOC rejection was well-correlated with compound molecular volume and polarizability, with coefficient of determination (R2) values of 0.94. To enhance this correlation, an extensive literature review was conducted and independent literature sources were correlated with rejection. Literature citations reporting the removal effectiveness of an additional sixty-one TrOCs by loose NF membranes (a total of 95 data points) were found to be well-correlated with molecular volume and polarizability, with R2 values of 0.72 and 0.71, respectively.Of the TrOC's detected during this research, the anthropogenic solute caffeine was selected to be modeled using the homogeneous solution diffusion model (HSDM) and the HSDM with film theory (HSDM-FT). Mass transfer coefficients, K_w (water) K_s (caffeine), and k_b (caffeine back-transport) were determined experimentally, and K_s was also determined using the Sherwood correlation method. Findings indicate that caffeine transport through the NF pilot could be explained using experimentally determined K_s values without incorporating film theory, since the HSDM resulted in a better correlation between predicted and actual caffeine permeate concentrations compared to the HSDM-FT and the HSDM using K_s obtained using Sherwood applications. Predicted versus actual caffeine content was linearly compared, revealing R2 values on the order of 0.99, 0.96, and 0.99 for the HSDM without FT, HSDM-FT, and HSDM using a K_s value obtained using the Sherwood correlation method. However, the use of the HSDM-FT and the Sherwood number resulted in the over-prediction of caffeine concentrations in permeate streams by 27 percent and 104 percent, respectively.
Show less - Date Issued
- 2016
- Identifier
- CFE0006331, ucf:51545
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006331
- Title
- Low Impact Development Analysis and Comparative Assessment of Wet Detention Ponds with Floating Treatment Wetlands.
- Creator
-
Hartshorn, Nicholas, Chang, Ni-bin, Kibler, Kelly, Wanielista, Martin, University of Central Florida
- Abstract / Description
-
The aim of this thesis is to examine, develop, and assess innovative best management practices (BMPs) in stormwater management for pollutant reduction, flood control, and environmental sustainability. Previous research has clearly shown that urban stormwater runoff quickly transports pathogens, metals, sediment, and chemical pollutants to receiving waterbodies, resulting in the degradation of receiving waters and disruption of ecological networks. In response to this growing concern,...
Show moreThe aim of this thesis is to examine, develop, and assess innovative best management practices (BMPs) in stormwater management for pollutant reduction, flood control, and environmental sustainability. Previous research has clearly shown that urban stormwater runoff quickly transports pathogens, metals, sediment, and chemical pollutants to receiving waterbodies, resulting in the degradation of receiving waters and disruption of ecological networks. In response to this growing concern, regulatory agencies, such as the Environmental Protection Agency (EPA) and the Florida Department of Environmental Protection (FDEP), have set forth regulations aimed at protecting and restoring waterbodies. These regulations include numeric nutrient criteria (NNC) and total maximum daily loads (TMDLs), which enable effective monitoring of a waterbody with regard to nitrogen and phosphorus pollution and help to restore waters not attaining their designated uses. Currently, many stormwater management systems do not provide sufficient nutrient reduction to meet growing regulations; thus, there is a clear need to develop additional BMPs to enhance nutrient reduction.Firstly, this thesis provides an overview of BMPs used in urban regions across the globe to create networks of low impact development (LID), with a focus on policy analysis. Chapter 2 examines the regulatory policies in areas of the United States, Europe, Asia, and Australia from a federal, state, to local perspective in order to pinpoint what policies are supporting the shift from gray cities to green cities. Gray cities are cities comprised mainly of impervious surfaces, with little regard to the ecological health and hydrologic characteristics of the area. Green cities utilize LID to mimic pre-development hydrologic and ecological characteristics, resulting in a city that is both environmentally sustainable and offers many ecosystem services. The results of the global policy analysis identified the policies and other factors, such as funding and public involvement, necessary to facilitate the shift from gray cities to green cities and support the widespread implementation of LID.Secondly, this thesis provides a comparative analysis of three stormwater wet detention ponds, which all contained floating treatment wetlands (FTWs). FTWs are a new BMP, used to enhance nutrient reduction rates in stormwater wet detention ponds. FTWs are a manmade ecosystem, utilizing plants that grow on interlocking floating foam mats, that mimics natural wetlands. Both episodic (storm event) and routine (non-storm event) sampling campaigns were carried out at the three stormwater wet detention ponds located in Gainesville, Ruskin, and Orlando, Florida. The comparative analysis of the three stormwater wet detention ponds was based on two perspectives. The fist analysis, found in Chapter 2, focuses solely on the nutrient reduction potential of FTWs and how the installation of FTWs can be used to improve nutrient reduction rates in stormwater wet detention ponds. The second analysis, found in Chapter 3, focuses on the interaction between nutrients, microcystin, and chlorophyll-a in the stormwater wet detention ponds before and after installation of the FTWs. These two studies provide a holistic understanding of the environmental and ecological aspects of utilizing FTWs as a BMP in stormwater management. FTWs were found to have a significant impact on nutrient reduction rates in the three stormwater wet detention ponds, with total nitrogen (TN) reduction rates reaching 33% at the Ruskin pond during storm events and total phosphorus (TP) reduction rates reaching 71% at the Gainesville pond during storm events. Moreover, microcystin concentrations were found to have a negative correlation with nutrient concentrations, specifically total phosphorus, for both storm and non-storm events across all three ponds.
Show less - Date Issued
- 2016
- Identifier
- CFE0006113, ucf:51206
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006113
- Title
- Evaluating Floating Treatment Wetlands to Improve Nitrogen Removal in a Wet Detention Pond.
- Creator
-
Marimon, Zachary, Chang, Ni-bin, Fauth, John, Bohlen, Patrick, University of Central Florida
- Abstract / Description
-
Wet detention ponds are used for stormwater treatment across the United States and reduce most pollutants by at least 60%, but only remove 30% of total nitrogen. Floating Treatment Wetlands (FTWs) are an emerging technology that uses aquatic plants suspended in the pelagic zone to remove nitrogen through vegetative assimilation and microbial denitrification. A before-after field experiment evaluated nitrogen removal in a an existing pond in Orlando, FL, retrofitted with BioHaven(&)#174; FTWs...
Show moreWet detention ponds are used for stormwater treatment across the United States and reduce most pollutants by at least 60%, but only remove 30% of total nitrogen. Floating Treatment Wetlands (FTWs) are an emerging technology that uses aquatic plants suspended in the pelagic zone to remove nitrogen through vegetative assimilation and microbial denitrification. A before-after field experiment evaluated nitrogen removal in a an existing pond in Orlando, FL, retrofitted with BioHaven(&)#174; FTWs planted with the aquatic macrophytes Juncus effusus (Soft Rush) and Pontederia cordata (Pickerelweed). Surface water samples were used to compare the nitrogen-removal performance of the pond under both storm and non-storm conditions during a pre-analysis phase (control) to post-analysis after FTW deployment. The evaluation revealed similar TN removals in non-storm conditions during pre-analysis and post-analysis periods (-1% and -3%, respectively). During storm conditions, there was a negative TN removal of -26% in the pre-analysis compared to the positive 29% removal post-analysis. In addition, nitrogen concentrations for organic-nitrogen, ammonia/ammonium, and nitrites/nitrates were used as input for calibrating and validating a system dynamics model to predict multiple, interacting nitrogen species' transformation and translocation across the abiotic and biotic components of water, sediment, plants, and atmosphere. The validated model created in STELLA v.9.4.1 was used to simulate alternative designs to achieve maximum nitrogen removal based on the treatment efficiency in the evaluation. Simulations predicted 60% FTW coverage at the experimental planting density (22 per square meter) could achieve maximum nitrogen removal. Alternatively, similar nitrogen removal could be achieved at only 15% FTW coverage by increasing plant density. The model can be used as a low-cost tool for designing FTW technology applications and monitoring nitrogen transport.
Show less - Date Issued
- 2016
- Identifier
- CFE0006140, ucf:51168
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006140
- Title
- Predicting the development of counselor self-efficacy in counselors-in-training during their first semester in practicum using embedded, rich media in a distributed learning environment.
- Creator
-
Super, John, Young, Mark, Hundley, Gulnora, Hagedorn, William, Ieva, Kara, University of Central Florida
- Abstract / Description
-
The first semester of practicum is a difficult time for counseling students as they learn to integrate knowledge and theory into clinical practice, often evoking high levels of anxiety (Barbee, Scherer, (&) Combs, 2003; Ronnestad (&) Skovholt, 1993) and limiting counselor self-efficacy (Bernard (&) Goodyear, 2009; Melchert et al., 1996). Practicum is the first opportunity counselors-in-training have to apply theoretical knowledge in a professional setting, use new clinical skills, and test...
Show moreThe first semester of practicum is a difficult time for counseling students as they learn to integrate knowledge and theory into clinical practice, often evoking high levels of anxiety (Barbee, Scherer, (&) Combs, 2003; Ronnestad (&) Skovholt, 1993) and limiting counselor self-efficacy (Bernard (&) Goodyear, 2009; Melchert et al., 1996). Practicum is the first opportunity counselors-in-training have to apply theoretical knowledge in a professional setting, use new clinical skills, and test how well they fit into the field of counseling (O'Connell (&) Smith, 2005). Additionally, if counselor educators do not fully understand the process counselors in training develop counselor self-efficacy, they may be overlooking opportunities to educate a new generation of counselors or using their time, energy and resources in areas that may not be the most efficient in counselor development. The purpose of this study was to examine the effect of an embedded, rich-media distributed learning environment added to practicum had on the development of counselor self-efficacy, reduction of anxiety and effect on treatment outcomes for counselors in training in their first semester of practicum. This study found the use of distributed learning to extend education beyond the classroom significantly and positively affected the development of counselor self-efficacy, had mixed statistical results on the reduction of anxiety and did not have an affect on treatment outcome. Furthermore, the study used hierarchical linear modeling to see if the characteristics of individual practicums affected the three main constructs, the results did not find a significant effect from the groups.The results of the study produced several implications for counseling. First, if counselor educators help counselors in training become more aware of counselor self-efficacy, the students can better understand how the construct affects their anxiety, their comfort with expanding or improving their clinical skills and the approach they take to a client, session or treatment plan. A second implication is that using an embedded, rich-media learning environment may help the counselors in training to develop their clinical skills. The results of this study imply that utilizing technology and discussions beyond the classroom is beneficial for (a) increasing the students' counselor self-efficacy, (b) normalizing the emotions the students may experience and (c) improving the methods for development through vicarious learning. Also, as technology continues to evolve and as education continues to adapt by integrating technology into the classrooms, counselor educators should begin exploring how to best use technology to teach students during practicum. Traditionally, based on the nature of counseling, practicum has been an interpersonal experience, but the results of the current study imply the methods of extending learning beyond the traditional class time is beneficial. Finally, as counselor educators strive to increase students' counselor self-efficacy early in practicum, in an environment that contains anxiety and self-doubt (Bernard (&) Goodyear, 2009; Cashwell (&) Dooley, 2001) using vicarious learning through video and online discussions can assist in accomplishing the goal.
Show less - Date Issued
- 2013
- Identifier
- CFE0004758, ucf:49762
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004758
- Title
- Chemophysical Characteristics and Application of Biosorption Activated Media (BAM) for Copper and Nutrient Removal in Stormwater Management.
- Creator
-
Jones, Jamie, Chang, Ni-bin, Bohlen, Patrick, Wanielista, Martin, University of Central Florida
- Abstract / Description
-
For high groundwater table areas, stormwater wet detention ponds are utilized as the preferred stormwater management throughout the state of Florida. Previous research has found that accumulations of nutrients, algae, heavy metals, pesticides, chlorophyll a, fecal coliform bacteria and low concentrations of dissolved oxygen (DO) are common characteristics of stormwater wet detention ponds. Although these pollutant levels are not regulated within the ponds, states are required to compute the...
Show moreFor high groundwater table areas, stormwater wet detention ponds are utilized as the preferred stormwater management throughout the state of Florida. Previous research has found that accumulations of nutrients, algae, heavy metals, pesticides, chlorophyll a, fecal coliform bacteria and low concentrations of dissolved oxygen (DO) are common characteristics of stormwater wet detention ponds. Although these pollutant levels are not regulated within the ponds, states are required to compute the pollutant load reductions through total maximum daily load (TMDL) programs to meet the water quality requirements addressed by the Clean Water Act (CWA). In this study, field sampling data of stormwater ponds throughout Florida are presented to identify concentration levels of the main contaminants of concern in the discharge of wet detention ponds. Sampling was done to identify possible sources, in addition to possible removal mechanisms via the use of specific sorption media. Nutrients were found as a main problematic pollutant, of which orthophosphate, total phosphorus, ammonia, nitrate, and total nitrogen were targeted whereas heavy metals exhibited minor concerns. Accumulation of high nutrient concentrations may be mitigated by the adoption of best management practices (BMPs) utilizing biosorption activated media (BAM) to remove phosphorus and nitrogen species through physical, chemical, and biological processes. This study aims to increase overall scientific understanding of phosphorus removal dynamics in sorption media systems via Langmuir and Freundlich isotherms and column studies. The removal of phosphorus (P) was proven effective primarily through chemophysical processes. The maximum orthophosphate adsorption capacities were determined under varying conditions of the media within the columns, which were found up to 0.000534 mg-P adsorbed per gram BAM with influent concentrations of 1 mg?L-1 orthophosphate in distilled water and 1 hour hydraulic residence time (HRT). When using spiked pond water under the same conditions, the adsorption capacity was increased about 30 times to 0.01507 mg-P?g-1 BAM presumably due to the properties and concentrations of ions affecting the diffusion rate regulating the surface orthophosphate reactions. These equilibrium media uptake values (q) were used to calculate the life expectancies of the media under varying HRT and influent concentrations of treatment. Chemophysical and biological removal capabilities of the media for total nitrogen, ammonia, and nitrate were effective in columns using 1100 g of BAM. In flow-through column conditions, ammonia had a consistent ~95% removal while effluent nitrate concentrations were highly variable due to the simultaneous nitrification-denitrification processes once an aerobic-anaerobic environment was established. Batch column experiments simulating no-flow conditions within a media bed reactor resulted in orthophosphate removals comparable with the continuous flow conditions, increased total phosphorus effluents indicative of chemical precipitation of orthophosphate, decreased ammonia removal, and increased nitrate removal. Due to a biofilm's sensitivity to even low copper concentrations and accumulation in ponds, a copper sorption media mix of (")green(") materials was generated. Freundlich and Langmuir isotherm tests concluded a successful mix resulting in copper removal efficiencies up to 96%.
Show less - Date Issued
- 2013
- Identifier
- CFE0005009, ucf:49995
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005009
- Title
- Study of the Formation and Control of Disinfection By-Products Originating from a Surface Water Supply on the Volcanic Island of Guam.
- Creator
-
Laberge, Erica, Duranceau, Steven, Randall, Andrew, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
Three oxidants have been evaluated for use as alternative chemical pretreatments for Fena Lake, a surface water that supplies the U.S. Navy's Public Water System (PWS) on the volcanic island of Guam. The study consisted of two investigative components. The first and primary component included a bench-scale evaluation to study the effects of different pre-oxidant chemicals on the formation of chlorinated disinfection by-products (DBPs). The second and ancillary component included a series of...
Show moreThree oxidants have been evaluated for use as alternative chemical pretreatments for Fena Lake, a surface water that supplies the U.S. Navy's Public Water System (PWS) on the volcanic island of Guam. The study consisted of two investigative components. The first and primary component included a bench-scale evaluation to study the effects of different pre-oxidant chemicals on the formation of chlorinated disinfection by-products (DBPs). The second and ancillary component included a series of water treatment and distribution system management studies that analyzed DBP formation within the treatment plant and water distribution system. The goal of this research was to reduce total trihalomethane (TTHM) and the five haloacetic acid (HAA5) formations in the PWS.In the primary component of the research, raw surface water from Fena Lake was collected by U.S. Navy personnel and shipped to University of Central Florida (UCF) laboratories for experimentation. Bench-scale tests that simulated the coagulation, flocculation, sedimentation and filtration (CSF) that comprises the Navy Water Treatment Plant (NWTP) were used to evaluate the use of two alternative pre-oxidants, potassium permanganate (KMnO4) and chlorine dioxide (ClO2) in lieu of gaseous chlorine (Cl2). The research assessed DBP formation by comparing several pretreatment scenarios, namely: (1) no pretreatment, (2) chlorine pretreatment, and (3) alternative oxidant pretreatment. KMnO4 pretreatment resulted in the lowest percent reduction of TTHMs and HAA5 relative to chlorine pretreatment, at 5.7% and 22.7%, respectively; however, this amount was still a reduction from the results demonstrated for the chlorine pretreatment condition. Without using a pre-oxidant, TTHM and HAA5 formation were reduced by 22.8% and 37.3%, respectively, relative to chlorine pretreatment. Chlorine dioxide demonstrated the greatest TTHM and HAA5 reduction relative to chlorine pretreatment at 34.4% and 53.3%, respectively.The second component of research consisted of a series of studies that evaluated distribution system operations and management alternatives to identify opportunities that could achieve DBP reduction within the PWS. Three concerns that were addressed were the NWTP's compliance with the U.S. Environmental Protection Agency's (USEPA's) Stage 2 Disinfectants/Disinfection By-Products (D/DBP) Rule, variable hydraulic detention times within a small subdivision in the distribution system, and severe weather. It was determined that: (1) A decision based on in-plant studies to cease prechlorination at the NWTP resulted in a decrease in TTHMs and HAA5s throughout the distribution system by 62% and 75%, respectively; (2) A fluoride tracer study led to the discovery of a valved pipeline responsible for elevated DBPs because of excessive water age that when exercised and managed resolved intermittent DBP spikes in the PWS; and (3) when the NWTP's ballasted floc clarifier (BFC) was operated in-series prior to the conventional CSF process during severe weather conditions the TTHM and HAA5 were below 39 ug/L and 29 ug/L, respectively, proving BFC in-series is a practical option for the plant during severe weather.
Show less - Date Issued
- 2014
- Identifier
- CFE0005515, ucf:50299
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005515
- Title
- Functional Characterization of Green Sorption Media and Scaling of Pilot Studies for Copper Removal in Stormwater Runoff.
- Creator
-
Houmann, Cameron, Chang, Ni-bin, Wanielista, Martin, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. The results found that the use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an...
Show moreGreen adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. The results found that the use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. A suite of tests were conducted on the media mixture and the individual media components including studies of isotherm, reaction kinetics, column adsorption and reaction kinetics. Batch adsorption tests revealed that the media and media mixture follow both the Freundlich and Langmuir isotherm models and that the coconut coir had the highest affinity for copper. A screening of desorbing agents revealed that hydrochloric acid has good potential for copper desorption, while batch tests for desorption with hydrochloric acid as the desorbing agent showed the data fit the Freundlich isotherm model. Reaction kinetics revealed that the adsorption reaction took less than 1 hour to reach equilibrium and that it followed pseudo-second order kinetics for the mixture and coconut. Desorption kinetic data had high correlation with the pseudo-second order model and revealed a rapid desorption reaction. Batch equilibrium data over 3 adsorption/desorption cycles found that the coconut coir and media mixture were the most resilient and demonstrated that they could be used through 3 or more adsorption/desorption cycles. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg?g-1, compared to 0.021 mg?g-1 at an influent concentration of 1.0 mg?L-1 and a hydraulic retention time of 30 minutes. A physical evaluation of the media found the macro-scale properties, such as particle size distribution and mass-volume relationships, and observed the micro-scale properties such as surface and pore microstructures, crystalline structures, and elemental composition. FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The equilibrium and dynamic adsorption testing results were confirmed by elemental analysis, which showed measureable quantities of copper in the coconut coir and media mixture after adsorption followed by partial desorption. A new scaling-up theory was developed through a joint consideration of the Damk(&)#246;hler and P(&)#233;clet numbers for a constant media particle size such that a balance between transport-controlled and reaction-controlled kinetics can be harmonized. A series of column breakthrough tests at varying hydraulic residence times revealed a clear peak adsorptive capacity for the media mixture at a Damk(&)#246;hler number of 2.7. The P(&)#233;clet numbers for the column breakthrough tests indicated that mechanical dispersion is an important effect that requires further consideration in the scaling-up process. However, perfect similitude of the Damk(&)#246;hler number cannot be maintained for a constant media particle size, and relaxation of hydrodynamic similitude through variation of the P(&)#233;clet number must occur.
Show less - Date Issued
- 2015
- Identifier
- CFE0005630, ucf:50205
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005630
- Title
- Evaluation of Biosorption Activated Media Under Roadside Swales for Stormwater Quality Improvement & Harvesting.
- Creator
-
Hood, Andrew, Chopra, Manoj, Wanielista, Martin, Randall, Andrew, University of Central Florida
- Abstract / Description
-
Stormwater runoff from highways is a source of pollution to surface water bodies and groundwater. This project develops a bio-detention treatment and harvesting system that is incorporated into roadside swales. The bio-detention system uses Bold & Gold(TM), a type of biosorption activated media (BAM), to remove nutrients from simulated highway runoff and then store the water in underground vaults for infiltration, controlled discharge, and/or irrigation and other non-potable applications. In...
Show moreStormwater runoff from highways is a source of pollution to surface water bodies and groundwater. This project develops a bio-detention treatment and harvesting system that is incorporated into roadside swales. The bio-detention system uses Bold & Gold(TM), a type of biosorption activated media (BAM), to remove nutrients from simulated highway runoff and then store the water in underground vaults for infiltration, controlled discharge, and/or irrigation and other non-potable applications. In order to design a bio-detention system, media characteristics and media/water quality relationships are required. Media characteristics determined through testing include: specific gravity, permeability, infiltration, maximum dry density, moisture content of maximum dry density, and particle-size distribution. One of the goals of this experiment is to compare the nitrogen and phosphorous species concentrations in the effluent of BAM to sandy soil for simulated highway runoff. Field scale experiments are done on an elevated test bed that simulates a typical roadway with a swale. The swale portion of the test bed is split into halves using BAM and sandy soil. The simulated stormwater flows over a concrete section, which simulates a roadway, and then over either sod covered sandy soil or BAM. One, one and a half, and three inch storms are each simulated three times with a duration of 30 minutes each. During the simulated storm event, initial samples of the runoff (influent) are taken. The test bed is allowed to drain for two hours after the rainfall event and then samples of each of the net effluents are taken. In addition to the field scale water quality testing, column tests are also preformed on the sandy soil and Bold & Gold(TM) without sod present. Sod farms typically use fertilizer to increase production, thus it is reasonable to assume that the sod will leach nutrients into the soils on the test bed, especially during the initial test runs. The purpose of the column tests is to obtain a general idea of what percentage removals of total phosphorus and total nitrogen are obtained by the sandy soil and Bold & Gold(TM). It is shown that the Bold & Gold(TM) media effluent has significantly lower concentrations of total nitrogen and total phosphorus compared to the effluent of the sandy soil based on an 80% confidence level. The Bold & Gold(TM) has a 41% lower average effluent concentration of total nitrogen than the sandy soil. The Bold & Gold(TM) media has a 78% lower average effluent concentration of total phosphorus than the sandy soil. Using both the column test data in combination with the field scale data, it is determined that the Bold & Gold(TM) BAM system has a total phosphorus removal efficiency of 71%. The removal efficiency is increased when stormwater harvesting is considered. A total phosphorus reduction of 94% is achieved in the bio-detention & harvesting swale system sample design problem.
Show less - Date Issued
- 2012
- Identifier
- CFE0004312, ucf:52869
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004312
- Title
- Trihalomethane Removal and Re-Formation in Spray Aeration Processes Treating Disinfected Groundwater.
- Creator
-
Smith, Cassandra, Duranceau, Steven, Randall, Andrew, Lee, Woo Hyoung, University of Central Florida
- Abstract / Description
-
Historically, chlorination has been widely utilized as a primary and secondary disinfectant in municipal water supplies. Although chlorine disinfection is effective in inactivating pathogenic microbes, the use of chlorine creates the unintentional formation of regulated chemicals. On January 4, 2006, the United States Environmental Protection Agency (EPA) promulgated the Stage 2 Disinfectants/Disinfection by-product rule (DBPR) that focuses on public health protection by limiting exposure to...
Show moreHistorically, chlorination has been widely utilized as a primary and secondary disinfectant in municipal water supplies. Although chlorine disinfection is effective in inactivating pathogenic microbes, the use of chlorine creates the unintentional formation of regulated chemicals. On January 4, 2006, the United States Environmental Protection Agency (EPA) promulgated the Stage 2 Disinfectants/Disinfection by-product rule (DBPR) that focuses on public health protection by limiting exposure to four trihalomethanes (THM) and five haloacetic acids (HAA5), formed when chlorine is used for microbial pathogen control. This thesis examines post-aeration TTHM formation when employing spray-aeration processes to remove semi-volatile TTHMs from chlorinated potable water supplies.A bench scale air stripping unit was designed, constructed and operated to evaluate spray aeration for the removal of the four regulated trihalomethane (THM) species from potable drinking water including bromodichloromethane, bromoform, dibromochloromethane, chloroform. The study was conducted using finished bulk water samples collected from two different water treatment facilities (WTFs) located in Oviedo and Babson Park, Florida. Both treatment plants treat groundwater; however, Oviedo's Mitchell Hammock WTF (MHWTF) supply wells contain dissolved organic carbon and bromide DBP precursors whereas the Babson Park WTF #2 (BPWTF2) supply well contains dissolved organic carbon DBP precursors but is absent of bromide precursor. Three treatment scenarios were studied to monitor impacts on total trihalomethane (TTHM) removal and post-treatment (post-aeration) TTHM formation potential, including 1) no treatment (non-aerated control samples), 2) spray aeration via specially fabricated GridBee(&)#174; nozzle for laboratory-scale applications, 3) spray aeration via a commercially available manufactured BETE(&)#174; nozzle used for full-scale applications. Select water quality parameters, chlorine residual, and total trihalomethane concentrations were monitored throughout the study. The GridBee(&)#174; spray nozzle resulted in TTHM removals ranging from 45.2 (&)#177; 3.3% for the BPWTF2 samples, and 37.7 (&)#177; 3.1% for the MHWTF samples. The BETE(&)#174; spray nozzle removed 54.7(&)#177;3.9% and 48.1(&)#177;6.6% of total trihalomethanes for the Babson Park and Mitchell Hammock WTF samples, respectively. The lower percent removals at the MHWTF are attributed to the detectable presence of bromide and subsequent formation of hypobromous acid in the samples. Post spray aeration TTHM formation potentials were monitored and it was found that the MHWTF experienced significantly higher formation potentials, once again due to the presence of hypobromous acid which led to increases in overall TTHM formation over time in comparison with the Babson Park WTF #2 TTHM formation samples. In addition, chlorine residuals were maintained post spray aeration treatment, and initial chlorine residual and trihalomethane concentrations did not significantly impact overall spray nozzle performance. Among other findings, it was concluded that spray nozzle aeration is a feasible option for the Babson Park WTF #2 for TTHM compliance. For Oviedo's Mitchell Hammock WTF spray aeration was successful in removing TTHMs, however it was not effective in maintaining DBP rule compliance due to the excessive nature of DBP formation in the water samples. This study was not intended to serve as an assessment of varying nozzle technologies; rather, the focus was on the application of spray aerators for TTHM removal and post-formation in drinking water systems.
Show less - Date Issued
- 2015
- Identifier
- CFE0005715, ucf:50117
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005715
- Title
- APPLICATION OF ABSORPTIVE TREATMENTS ON TRAFFIC NOISE BARRIERS IN FLORIDA.
- Creator
-
Chua, Chin Boon, Wayson, Roger, University of Central Florida
- Abstract / Description
-
In this thesis, the parallel barrier analysis feature in the Federal Highway Administration Traffic Noise Model (FHWA TNM), which is based on RAYVERB was used to explore the effects of multiple reflections due to single and parallel barriers and the use of absorptive treatment. Database was developed from the data collected from previous research efforts was used to generate a best fit equation model that can be used as a predetermining tool to determine the magnitude of parallel barrier...
Show moreIn this thesis, the parallel barrier analysis feature in the Federal Highway Administration Traffic Noise Model (FHWA TNM), which is based on RAYVERB was used to explore the effects of multiple reflections due to single and parallel barriers and the use of absorptive treatment. Database was developed from the data collected from previous research efforts was used to generate a best fit equation model that can be used as a predetermining tool to determine the magnitude of parallel barrier insertion loss. The best fit equation model was then used to test against measured/model result and TNM prediction results for its validity. Absorptive materials were also studied such that 3 top of them were selected and recommended for Florida highway barrier use. It was found that the top three absorptive treatments for use on Florida highway barriers have been determined to be cementitous material, metal wool and glass fiber. These materials can be used to reduce the sound reflections for single and parallel barriers. The developed best fit equation model from this research is Deg = -2.17NRC - CW0.42 + 1.97eln(BH) + RH0.29 + DBB0.27; the prediction results give moderately high R2 value of 0.55 if compared to the results from database. Prediction results from best fit equation model was also found to be consistent with the results from the measure/modeled results, providing further proof of the validity of the model. However, if compared results from equation model, TNM and measured/model (measured and model compared results using ANSI method), TNM was shown to provide higher insertion loss degradation. It was found that the most effective placement of absorptive material was the pattern which covers the barrier from the bottom up; it was also found that only about 60% from the bottom of the barrier area requires covering with high NRC absorptive treatment (NRC greater than 0.8) without sacrificing insertion loss. Also, if the barrier area near the top includes an easily obtainable NRC value of 0.4, only 40% to 50% of the bottom barrier needs absorptive treatment with a higher, more expensive NRC rating. These findings can substantially reduce the cost of conventional absorptive barrier which have full coverage of high NRC absorptive treatment. This research has begun important improvements in noise barrier design, additional work can be continued to further verify all the findings in this thesis such that easier and better equation model can be developed to calculate insertion loss degradation and cheaper absorptive barrier with less absorptive material usage can be built.
Show less - Date Issued
- 2004
- Identifier
- CFE0000008, ucf:46127
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000008