Current Search: thermal lensing (x)
View All Items
- Title
- Photothermal Lensing in Mid-Infrared Materials.
- Creator
-
Cook, Justin, Richardson, Martin, Shah, Lawrence, Gaume, Romain, University of Central Florida
- Abstract / Description
-
A thorough understanding of laser-materials interactions is crucial when designing and building optical systems. An ideal test method would probe both the thermal and optical properties simultaneously for materials under large optical loads where detrimental thermal effects emerge. An interesting class of materials are those used for infrared wavelengths due to their wide spectral transmission windows and large optical nonlinearities. Since coherent sources spanning the mid-wave and long-wave...
Show moreA thorough understanding of laser-materials interactions is crucial when designing and building optical systems. An ideal test method would probe both the thermal and optical properties simultaneously for materials under large optical loads where detrimental thermal effects emerge. An interesting class of materials are those used for infrared wavelengths due to their wide spectral transmission windows and large optical nonlinearities. Since coherent sources spanning the mid-wave and long-wave infrared wavelength regions have only become widely available in the past decade, data regarding their thermal and optical responses is lacking in literature.Photothermal Lensing (PTL) technique is an attractive method for characterizing the optical and thermal properties of mid-infrared materials as it is nondestructive and can be implemented using both continuous wave and pulsed irradiation. Analogous to the well-known Z-scan, the PTL technique involves creating a thermal lens within a material and subsequently measuring this distortion with a probe beam. By translating the sample through the focus of the pump laser, information can be obtained regarding the nonlinear absorption, thermal diffusivity and thermo-optic coefficient. This thesis evaluates the effectiveness and scope of the PTL method using numerical simulations of low loss infrared materials. Specifically, the response of silicon, germanium, and As2Se3 glass is explored. The 2 ?m pump and 4.55 ?m probe beam geometries are optimized in order to minimize experimental error. Methodologies for estimating the thermal diffusivity, nonlinear absorption coefficient and thermo-optic coefficient directly from the experimentally measured PTL signal are presented. Finally, the ability to measure the nonlinear absorption coefficient without the need for high-energy or ultrashort optical pulses is demonstrated.
Show less - Date Issued
- 2017
- Identifier
- CFE0006730, ucf:51885
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006730
- Title
- OPTICAL AND PHYSICAL PROPERTIES OF CERAMIC CRYSTAL LASER MATERIALS.
- Creator
-
Simmons, Jed, Bass, Michael, University of Central Florida
- Abstract / Description
-
Historically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic...
Show moreHistorically ceramic crystal laser material has had disadvantages compared to single crystal laser material. However, progress has been made in the last decade and a half to overcome the disadvantages associated with ceramic crystal. Today, because of the promise of ceramic crystal as a high power laser material, investigation into its properties, both physical and optical, is warranted and important. Thermal expansion was measured in this thesis for Nd:YAG (yttrium aluminum garnet) ceramic crystal using an interferometric method. The interferometer employed a spatially filtered HeNe at 633 nm wavelength. Thermal expansion coefficients measured for the ceramic crystal samples were near the reported values for single crystal Nd:YAG. With a similar experimental setup as that for the thermal expansion measurements, dn/dT for ceramic crystal Nd:YAG was measured and found to be slightly higher than the reported value for single crystal. Depolarization loss due to thermal gradient induced stresses can limit laser performance. As a result this phenomenon was modeled for ceramic crystal materials and compared to single crystals for slab and rod shaped gain media. This was accomplished using COMSOL Multiphysics, and MATLAB. Results indicate a dependence of the depolarization loss on the grain size where the loss decreases with decreased grain size even to the point where lower loss may be expected in ceramic crystals than in single crystal samples when the grain sizes in the ceramic crystal are sufficiently small. Deformation-induced thermal lensing was modeled for a single crystal slab and its relevance to ceramic crystal is discussed. Data indicates the most notable cause of deformation-induced thermal lensing is a consequence of the deformation of the top and bottom surfaces. Also, the strength of the lensing along the thickness is greater than the width and greater than that due to other causes of lensing along the thickness of the slab. Emission spectra, absorption spectra, and fluorescence lifetime were measured for Nd:YAG ceramic crystal and Yb:Lu2O3 ceramic crystal. No apparent inhomogeneous broadening appears to exist in the Nd:YAG ceramic at low concentrations. Concentration and temperature dependence effects on emission spectra were measured and are presented. Laser action in a thin disk of Yb:Y2O3 ceramic crystal was achieved. Pumping was accomplished with a fiber coupled diode laser stack at 938 nm. A slope efficiency of 34% was achieved with maximum output energy of 28.8 mJ/pulse.
Show less - Date Issued
- 2007
- Identifier
- CFE0001764, ucf:47273
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001764