View All Items
Pages
- Title
- DESIGNING OF ENERGY EFFICIENT INDOOR ENVIRONMENTS USING A LOCALIZED RADIAL BASIS FUNCTION MESHLESS METHOD.
- Creator
-
Huayamave, Victor, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
Around the world, the energy over consumption issue has been one of the key socio-economic and political challenges, which has drastically worsened over the last few years. Over the years engineers and environmentalists have proposed several approaches to improve energy efficiency. One is to reduce energy demand by improving consumption habits and a second approach is to introduce the use of a "greener" concept by using biomaterials in a diverse and more efficient manner in engineering...
Show moreAround the world, the energy over consumption issue has been one of the key socio-economic and political challenges, which has drastically worsened over the last few years. Over the years engineers and environmentalists have proposed several approaches to improve energy efficiency. One is to reduce energy demand by improving consumption habits and a second approach is to introduce the use of a "greener" concept by using biomaterials in a diverse and more efficient manner in engineering construction to create energy efficient environments. This work will investigate the effects of using "green" stabilized earth materials to provide and enhance thermal regulation for indoor environments. This effects can be compared to what skin does to regulate body temperature in humans, animals, and plants. On this effort the thermal behavior of several biomaterials will be analyzed using a computational tool in order to test the mechanical properties of biomaterials and also several geometry configurations to minimize the energy needed for heating and cooling an environment. In this research a localized radial basis function (LRBF) meshless method, developed by the Computational Mechanics Lab (CML) at the University of Central Florida, has been implemented to test several wall geometrical configuration using known biomaterials such as clay. The advantage of using the LRBF meshless method in this particular research is based in the accuracy of the numerical method and also because it decreases computation time regardless of model complexity geometry without the need of mesh generation. This research includes a complete description of the LRBF meshless method, as well as a quantification of cooling methods that have been used by past civilizations and recent construction standards but have not been validated on scientific basis. Results are presented which will demonstrate the effectiveness of using integrated sheets of biomaterials in engineering construction to increase energy efficiency in indoor environments.
Show less - Date Issued
- 2010
- Identifier
- CFE0003335, ucf:48478
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003335
- Title
- NUMERICAL STUDY OF A HIGH-SPEED MINIATURE CENTRIFUGAL COMPRESSOR.
- Creator
-
Li, Xiaoyi, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
A miniature centrifugal compressor is a key component of a reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial inlet guide vane, a radial impeller and an axial-direction diffuser ...
Show moreA miniature centrifugal compressor is a key component of a reverse Brayton cycle cryogenic cooling system. The system is commonly used to generate a low cryogenic temperature environment for electronics to increase their efficiency, or generate, store and transport cryogenic liquids, such as liquid hydrogen and oxygen, where space limit is also an issue. Because of space limitation, the compressor is composed of a radial inlet guide vane, a radial impeller and an axial-direction diffuser (which reduces the radial size because of smaller diameter). As a result of reduction in size, in order to obtain the required static pressure ratio/rise, the rotating speed of the impeller is as high as 313 KRPM, if Helium is used as the working fluid. Two main characteristics of the compressor miniature and high-speed, make it distinct from conventional compressors. Higher compressor efficiency is required to obtain a higher COP (coefficient of performance) system. Even though miniature centrifugal compressors start to draw researchers' attention in recent years, understanding of the performance and loss mechanism is still lacking. Since current experimental techniques are not advanced enough to capture details of flow at miniature scale, numerical methods dominate miniature turbomachinery study. This work numerically studied a high speed miniature centrifugal compressor. The length and diameter are 7 cm and 6 cm, respectively. The study was done on the same physical compressor but with three different combinations of working fluid and operating speed combinations: air and 108 KRPM, helium and 313 KRPM, and neon and 141 KRPM. The overall performance of the compressor was predicted with consideration of interaction between blade rows by using a sliding mesh model. It was found that the specific heat ratio needs to be considered when similarity law is applied. But Reynolds number effect can be neglected. The maximum efficiency observed without any tip leakage was 70.2% for air 64.8% for helium 64.9% for neon. The loss mechanism of each component was analyzed. Loss due to turning bend was found to be significant in each component, even up to 30%. Tip leakage loss of small scale turbomachines has more impact on the impeller performance than that of large scale ones. Use of 10% tip gap was found to reduce impeller efficiency from 99% to 90%. Because the splitter was located downstream of the impeller leading edge, any incidence at the impeller leading edge leads to poorer splitter performance. Therefore, the impeller with twenty blades had higher isentropic efficiency than the impeller with ten blades and ten splitters. Based on numerical study, a four-row vaned diffuser was used to replace a two-row vaned diffuser. It was found that the four-row vaned diffuser had much higher pressure recovery coefficient than the two-row vaned diffuser. However, most of pressure is found to be recovered at the first two rows of diffuser vanes. Consequently, the following suggestions were given to further improve the performance of the miniature centrifugal compressor. 1. Redesign inlet guide vane based on the numerical simulation and experimental results. 2. Add de-swirl vanes in front of the diffuser and before the bend. 3. Replace the current impeller with a twenty-blade impeller. 4. Remove the last row of diffuser.
Show less - Date Issued
- 2005
- Identifier
- CFE0000702, ucf:46605
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000702
- Title
- COMPUTATIONAL HURRICANE HAZARD ANALYSIS-A PERFORMANCE BASED ENGINEERING VIEW.
- Creator
-
Vanek, Christopher, Mackie, Kevin, University of Central Florida
- Abstract / Description
-
Widespread structural damage to critical facilities such as levees, buildings, dams and bridges during hurricanes has exemplified the need to consider multiple hazards associated with hurricanes as well as the potential for unacceptable levels of performance even if failure is not observed. These inadequate standards warrant the use of more accurate methods to describe the anticipated structural response, and damage for extreme events often termed performance based engineering (PBE)....
Show moreWidespread structural damage to critical facilities such as levees, buildings, dams and bridges during hurricanes has exemplified the need to consider multiple hazards associated with hurricanes as well as the potential for unacceptable levels of performance even if failure is not observed. These inadequate standards warrant the use of more accurate methods to describe the anticipated structural response, and damage for extreme events often termed performance based engineering (PBE). Therefore PBE was extended into the field of hurricane engineering in this study. Application of performance-based principles involves collection of the numerous hazards data from sources such as historical records, laboratory experiments or stochastic simulations. However, the hazards associated with a hurricane typically include spatial and temporal variation therefore, more detailed collection of data from each hazard of this loading spectrum is required. At the same time, computational power and computer-aided design have advanced and potentially allows for collection of the structure-specific hazard data. This novel technique, known as computational fluid dynamics (CFD), was applied to the wind and wave hazards associated with hurricanes to accurately quantify the spectrum of dynamic loads in this study. Numerical simulation results are presented on verification of this technique with laboratory experimental studies and further application to a typical Florida building and bridge prototype. Both the time and frequency domain content of random process signals were analyzed and compared through basic properties including the spectral density, autocorrelation, and mean. Following quantification of the dynamic loads on each structure, a detailed structural FEM was constructed of each structure and response curves were created for various levels of hurricane categories. Results show that both the time and frequency content of the dynamic signal could be accurately captured through CFD simulations in a much more cost effective manner than laboratory experimentation. Structural FEM models showed the poor performance of two coastal structures designed using deterministic principles, as serviceability and strength limit states were exceeded. Additionally, the response curves created for the prototype structure could be further developed for multiple wind directions and wave periods. Thus CFD is a viable option to wind and wave laboratory studies and a key tool for the development of PBE in the field of hurricane engineering.
Show less - Date Issued
- 2010
- Identifier
- CFE0003491, ucf:48963
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003491
- Title
- Computational Fluid Dynamics Investigation of A Novel Hybrid Comprehensive Stage II Operation For Single Ventricle Palliation.
- Creator
-
Hameed, Marwan, Kassab, Alain, DeCampli, William, Chow, Louis, Mansy, Hansen, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
Single ventricle (SV) anomalies account for one(&)#226;€"fourth of all cases of congenital heart disease. The existingthree hybrid staged surgical approach serving as a palliative treatment for this anomaly entails multiple complicationsand achieves a survival rate of only 50%. To reduce trauma associated with the second stage of the hybrid procedure,the hybrid comprehensive stage 2 (HCS2) operation was introduced in 2014 at Arnold Palmer Hospital in Orlando as anovel palliation alternative...
Show moreSingle ventricle (SV) anomalies account for one(&)#226;€"fourth of all cases of congenital heart disease. The existingthree hybrid staged surgical approach serving as a palliative treatment for this anomaly entails multiple complicationsand achieves a survival rate of only 50%. To reduce trauma associated with the second stage of the hybrid procedure,the hybrid comprehensive stage 2 (HCS2) operation was introduced in 2014 at Arnold Palmer Hospital in Orlando as anovel palliation alternative for a select subset of SV patients with adequate antegrade aortic flow. It avoids dissection ofthe pulmonary arteries by introducing a stented intrapulmonary baffle and avoids reconstruction of the aortic arch bymaintaining patency of the ductus arteriosus. This dissertation aims to provide better insight on the post-operativehemodynamics of HCS2 patients. A multi-scale Computational Fluid Dynamics (CFD) analysis of a synthetic,patient-derived HCS2 geometry based on unsteady laminar flow conditions and a non(&)#226;€"Newtonian blood model isutilized to quantify the resultant hemodynamics. The 3D CFD model is coupled to a 0D lumped parameter modelof the peripheral circulation that supplies the boundary conditions necessary to run the CFD analyses of the HCS2. Based on clinical parameters suggesting the baffle related narrowing to be at minimum 10mm and the pressuregradient not surpassing 20mmHg, hemodynamic analysis reveals that for even a 7.23mm narrowing the averagepressure drop across the baffle is 0.53mmHg. A peak pressure drop of 2.96mmHg was computed over the investigatedrange of clearances over the pulmonary baffle. Vortex shedding presents no concerns as the distance between the baffleand the aortic arch is much smaller compared to the length required for full vortices to form. Uneven contour distributionof the wall shear stress was observed due to the bend presented by the baffle that strongly affects the velocity profile inthe lumen across the pulmonary trunk and into the ductus arteriosus. Moreover, an oxygen transport model was derived,and the results showed consistency with the published data of Glenn patients. Particle residence time was also reported toidentify any blood recirculation or flow stagnation that may lead to platelet activation leading to clot formation rate.The study provides a range of main pulmonary artery geometries that, following multi-scale CFD analysis, present noconcerns regarding excessive pressure gradients or vortex formation. Moreover, the model identifies locations ofpotentially problematic hemodynamics that could be mitigated by shape optimization of the reconstruction.
Show less - Date Issued
- 2019
- Identifier
- CFE0007813, ucf:52340
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007813
- Title
- Investigation of the Flow Field and Associated Heat Transfer within an Asymmetrical Leading Edge Jet Impingement Array.
- Creator
-
Torres, Jorge, Kapat, Jayanta, Bhattacharya, Samik, Fernandez, Erik, University of Central Florida
- Abstract / Description
-
This thesis investigates the turbulent flow features present in asymmetrical leading edge jet impingement and their effects from a fluid and heat transfer prospective using both numerical and experimental techniques. The jet-centerline plane flow field was quantified experimentally through the non-intrusive experimental method of Particle Image Velocimetry (PIV), while an area average heat transfer was acquired via a traditional copper block method. The numerical element served to investigate...
Show moreThis thesis investigates the turbulent flow features present in asymmetrical leading edge jet impingement and their effects from a fluid and heat transfer prospective using both numerical and experimental techniques. The jet-centerline plane flow field was quantified experimentally through the non-intrusive experimental method of Particle Image Velocimetry (PIV), while an area average heat transfer was acquired via a traditional copper block method. The numerical element served to investigate how well the Reynolds Averaged Navier-Stokes (RANS) k-? SST turbulence model predicts the flow field and heat transfer within the leading edge and further investigate the results outside of the experimental scope.Two different geometries, varied by H/d, were investigated at various Reynolds numbers ranging from 20,000 to 80,000. The geometry consisted of an array of 9 identical jets impinging on a leading edge of diameter D/d = 2, with an asymmetrical sidewall configuration to better represent the pressure side (PS) and suction side (SS) of a turbine blade. Several vortices were identified within the flow field of the leading edge geometry. These vortices were larger for the H/d = 4 configuration but did not contribute to any increased or decreased heat transfer compared to that of the H/d = 2.7 configuration. The most influential aspect to both the flow field and heat transfer was the change in crossflow velocity between the two geometries. The smaller cross sectional area of the H/d = 2.7 configuration saw an increase in crossflow velocity and jet bending, tending to also decrease the heat transfer. The numerical results also reflected these results and in both area averaged heat transfer and localized heat transfer contour plots.
Show less - Date Issued
- 2019
- Identifier
- CFE0007734, ucf:52431
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007734
- Title
- CFD Analysis of a Uni-directional Impulse Turbine for Wave Energy Conversion.
- Creator
-
Velez, Carlos, Ilie, Marcel, Lin, Kuo-Chi, Qu, Zhihua, University of Central Florida
- Abstract / Description
-
Ocean energy research has grown in popularity in the past decade and has producedvarious designs for wave energy extraction. This thesis focuses on the performance analysis of auni-directional impulse turbine for wave energy conversion. Uni-directional impulse turbines canproduce uni-directional rotation in bi-directional flow, which makes it ideal for wave energyextraction as the motion of ocean waves are inherently bi-directional. This impulse turbine iscurrently in use in four of the world...
Show moreOcean energy research has grown in popularity in the past decade and has producedvarious designs for wave energy extraction. This thesis focuses on the performance analysis of auni-directional impulse turbine for wave energy conversion. Uni-directional impulse turbines canproduce uni-directional rotation in bi-directional flow, which makes it ideal for wave energyextraction as the motion of ocean waves are inherently bi-directional. This impulse turbine iscurrently in use in four of the world's Oscillating Wave Columns (OWC). Current research todate has documented the performance of the turbine but little research has been completed tounderstand the flow physics in the turbine channel. An analytical model and computational fluiddynamic simulations are used with reference to experimental results found in the literature todevelop accurate models of the turbine performance. To carry out the numerical computationsvarious turbulence models are employed and compared. The comparisons indicate that a lowReynolds number Yang-shih K-Epsilon turbulence model is the most computationally efficientwhile providing accurate results. Additionally, analyses of the losses in the turbine are isolatedand documented.Results indicate that large separation regions occur on the turbine blades whichdrastically affect the torque created by the turbine, the location of flow separation is documentedand compared among various flow regimes. The model and simulations show good agreementwith the experimental results and the two proposed solutions enhance the performance of theturbine showing an approximate 10% increase in efficiency based on simulation results.
Show less - Date Issued
- 2011
- Identifier
- CFE0004173, ucf:49049
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004173
- Title
- MULTIOBJECTIVE DESIGN OPTIMIZATION OF GAS TURBINE BLADE WITH EMPHASIS ON INTERNAL COOLING.
- Creator
-
Nagaiah, Narasimha, Geiger, Christopher, Nazzal, Dima, Reilly, Charles, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
In the design of mechanical components, numerical simulations and experimental methods are commonly used for design creation (or modification) and design optimization. However, a major challenge of using simulation and experimental methods is that they are time-consuming and often cost-prohibitive for the designer. In addition, the simultaneous interactions between aerodynamic, thermodynamic and mechanical integrity objectives for a particular component or set of components are difficult to...
Show moreIn the design of mechanical components, numerical simulations and experimental methods are commonly used for design creation (or modification) and design optimization. However, a major challenge of using simulation and experimental methods is that they are time-consuming and often cost-prohibitive for the designer. In addition, the simultaneous interactions between aerodynamic, thermodynamic and mechanical integrity objectives for a particular component or set of components are difficult to accurately characterize, even with the existing simulation tools and experimental methods. The current research and practice of using numerical simulations and experimental methods do little to address the simultaneous (")satisficing(") of multiple and often conflicting design objectives that influence the performance and geometry of a component. This is particularly the case for gas turbine systems that involve a large number of complex components with complicated geometries.Numerous experimental and numerical studies have demonstrated success in generating effective designs for mechanical components; however, their focus has been primarily on optimizing a single design objective based on a limited set of design variables and associated values. In this research, a multiobjective design optimization framework to solve a set of user-specified design objective functions for mechanical components is proposed. The framework integrates a numerical simulation and a nature-inspired optimization procedure that iteratively perturbs a set of design variables eventually converging to a set of tradeoff design solutions. In this research, a gas turbine engine system is used as the test application for the proposed framework. More specifically, the optimization of the gas turbine blade internal cooling channel configuration is performed. This test application is quite relevant as gas turbine engines serve a critical role in the design of the next-generation power generation facilities around the world. Furthermore, turbine blades require better cooling techniques to increase their cooling effectiveness to cope with the increase in engine operating temperatures extending the useful life of the blades.The performance of the proposed framework is evaluated via a computational study, where a set of common, real-world design objectives and a set of design variables that directly influence the set of objectives are considered. Specifically, three objectives are considered in this study: (1) cooling channel heat transfer coefficient, which measures the rate of heat transfer and the goal is to maximize this value; (2) cooling channel air pressure drop, where the goal is to minimize this value; and (3) cooling channel geometry, specifically the cooling channel cavity area, where the goal is to maximize this value. These objectives, which are conflicting, directly influence the cooling effectiveness of a gas turbine blade and the material usage in its design. The computational results show the proposed optimization framework is able to generate, evaluate and identify thousands of competitive tradeoff designs in a fraction of the time that it would take designers using the traditional simulation tools and experimental methods commonly used for mechanical component design generation. This is a significant step beyond the current research and applications of design optimization to gas turbine blades, specifically, and to mechanical components, in general.
Show less - Date Issued
- 2012
- Identifier
- CFE0004495, ucf:49282
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004495
- Title
- Transient CFD analysis of autorotation using hybrid LES and adaptive mesh morphing techniques.
- Creator
-
Coronado Domenge, Patricia, Das, Tuhin, Kassab, Alain, Kumar, Ranganathan, Leishman, J., Bhattacharya, Aniket, University of Central Florida
- Abstract / Description
-
Large-Eddy Simulation (LES) based turbulence modeling is a developing area of research in Fluid-Structure Interaction (FSI). There is considerable scope for further scientific research in this field and this dissertation aims to extend it to the study of flow-induced motion. The emphasis of this work is on autorotation, an important category of flow-induced motion that is commonly seen in energy applications such as wind turbines and in aviation applications such as the autogyro. In contrast...
Show moreLarge-Eddy Simulation (LES) based turbulence modeling is a developing area of research in Fluid-Structure Interaction (FSI). There is considerable scope for further scientific research in this field and this dissertation aims to extend it to the study of flow-induced motion. The emphasis of this work is on autorotation, an important category of flow-induced motion that is commonly seen in energy applications such as wind turbines and in aviation applications such as the autogyro. In contrast to existing works on FSI that typically assume prescribed motion of structures in a flow field, this research develops LES based FSI studies for large-scale flow-induced motions as seen in autorotation. The uniqueness of the formulation and modeling approach lies in the development of a numerically stable computational scheme that incorporates a moving and morphing mesh structure. The method is first demonstrated for the autorotation of a square flat plate and then extended to a rotor structure similar to that of a helicopter.In order to simulate an autorotating square flat plate, a coupled Computational Fluid Dynamics (CFD) - Rigid Body Dynamics (RBD) model is proposed, employing the delayed-detached-eddy simulation (DDES) and the Smagorinsky turbulence models to resolve subgrid-scale stresses (SGS). The plate is allowed to spin freely about its center of mass. Computational results are compared to experimental measurements and Reynolds Average Navier-Stokes (RANS) simulations found in the literature. When compared to RANS, the results from the LES models provide better predictions of the pressure coefficient. Moreover, LES accurately captures the transient behavior of the plate, and close correspondence is found between the predicted and measured moment coefficients. The qualitative prediction of vortex structures and the quantitative computation of pressure coefficients are in good agreement with experimental results. Hybrid models, such as improved Delayed-Detached-Eddy Simulation (iDDES), are shown to provide very similar results to those of pure LES. Therefore hybrid models are found to be a good alternative to use for the simulation of FSI in autorotation, saving valuable computational time . The iDDES method combines both RANS and LES, dividing the flow domain into LES far away from a solid wall and RANS near a solid wall, overcoming the computational costs of pure LES.Encouraging results from this effort prompted the extension to a realistic scenario, namely the autorotation of a flapping-blade rotor in a prevailing wind field. A coupled CFD - Multi Body Dynamics (MBD) model is developed to study the complex FSI of an autorotating 3-blade rotor, similar to that of a helicopter, employing the iDDES turbulence model. In addition to the rotor being allowed to spin freely about its axis, each of the individual blades is free to rotate about hinges at the root. This adds degrees of freedom to the kinematics of the rotor and necessitates localized mesh morphing around the blades to capture the FSI with accuracy. The model is validated against experimental data and shows excellent agreement. The experimental apparatus consists of a flapping blade rotor and a fixture used to mount it at different angles of incidence with respect to the wind field. The rotor is instrumented with a DC motor that is operated in generator mode. The setup is dual-purpose, providing speed measurement using the motor's back-emf and regenerative braking by varying the current draw. Overall, the presented research can help obtain accurate values of aerodynamic parameters at a high spatial resolution that would be otherwise difficult to acquire in experiments. Ultimately this approach can be a cost effective means of aerodynamic modeling in applications involving large scale FSI.
Show less - Date Issued
- 2016
- Identifier
- CFE0006088, ucf:50952
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006088
- Title
- Modeling of flow generated sound in a constricted duct at low Mach number.
- Creator
-
Thibbotuwawa Gamage, Peshala, Mansy, Hansen, Kassab, Alain, Bhattacharya, Samik, University of Central Florida
- Abstract / Description
-
Modelling flow and acoustics in a constricted duct at low Mach numbers is important for investigating many physiological phenomena such as phonation, generation of arterial murmurs, and pulmonary conditions involving airway obstruction. The objective of this study is to validate computational fluid dynamics (CFD) and computational aero-acoustics (CAA) simulations in a constricted tube at low Mach numbers. Different turbulence models were employed to simulate the flow field. Models included...
Show moreModelling flow and acoustics in a constricted duct at low Mach numbers is important for investigating many physiological phenomena such as phonation, generation of arterial murmurs, and pulmonary conditions involving airway obstruction. The objective of this study is to validate computational fluid dynamics (CFD) and computational aero-acoustics (CAA) simulations in a constricted tube at low Mach numbers. Different turbulence models were employed to simulate the flow field. Models included Reynolds Average Navier-Stokes (RANS), Detached eddy simulation (DES) and Large eddy simulation (LES). The models were validated by comparing study results with laser doppler anemometry (LDA) velocity measurements. The comparison showed that experimental data agreed best with the LES model results. Although RANS Reynolds stress transport (RST) model showed good agreement with mean velocity measurements, it was unable to capture velocity fluctuations. RANS shear stress transport (SST) k-? model and DES models were unable to predict the location of high fluctuating flow region accurately.CAA simulation was performed in parallel with LES using Acoustic Perturbation Equation (APE) based hybrid CAA method. CAA simulation results agreed well with measured wall sound pressure spectra. The APE acoustic sources were found in jet core breakdown region downstream of the constriction, which was also characterized by high flow fluctuations. Proper Orthogonal Decomposition (POD) is used to study the coherent flow structures at the different frequencies corresponding to the peaks of the measured sound pressure spectra. The study results will help enhance our understanding of sound generation mechanisms in constricted tubes including biomedical applications.
Show less - Date Issued
- 2017
- Identifier
- CFE0006920, ucf:51696
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006920
- Title
- A Multi-Scale CFD Analysis of Patient-Specific Geometries to Tailor LVAD Cannula Implantation Under Pulsatile Flow Conditions: an investigation aimed at reducing stroke incidence in LVADs.
- Creator
-
Prather, Ray, Kassab, Alain, Mansy, Hansen, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
A Left Ventricular Assist Device (LVAD) is a mechanical pump that provides temporary circulatory support when used as bridge-to-transplantation and relieves workload demand placed on a failing heart allowing for myocardia recovery when used as destination therapy. Stroke is the most devastating complication after ventricular assist device (VAD) implantation, with an incidence of 14-47% over 3-6 months. This complication due to thrombus formation and subsequent transport through the...
Show moreA Left Ventricular Assist Device (LVAD) is a mechanical pump that provides temporary circulatory support when used as bridge-to-transplantation and relieves workload demand placed on a failing heart allowing for myocardia recovery when used as destination therapy. Stroke is the most devastating complication after ventricular assist device (VAD) implantation, with an incidence of 14-47% over 3-6 months. This complication due to thrombus formation and subsequent transport through the vasculature to cerebral vessels continues to limit the widespread implementation of VAD therapy. Patient-specific computational fluid dynamics (CFD) analysis may elucidate ways to reduce this risk.We employed a multi-scale model of the aortic circulation in order to examine the effects on flow conditions resulting from varying the VAD cannula implantation location and angle of incidence of the anastomosis to the ascending aorta based on a patient-specific geometry obtained from CT scans. The multi-scale computation consists of a 0D lumped parameter model (LPM) of the circulation modeled via a 50 degree of freedom (DOF) electrical circuit analogy that includes an LVAD model coupled to a 3D computational fluid dynamics model of the circulation. An in-house adaptive Runge-Kutta method is utilized to solve the 50 DOF LPM, and the Starccm+ CFD code is utilized to solve the flowfield. This 0D-3D coupling for the flow is accomplished iteratively with the 0D LPM providing the pulsatile boundary conditions that drive the 3D CFD time-accurate computations of the flowfield. Investigated angle configurations include cannula implantations at 30(&)deg;, 60(&)deg; and 90(&)deg; to the right lateral wall of the ascending aorta. We also considered placements of the VAD cannula along the ascending aorta in which distances of the VAD anastomosis is varied relative to the take-off of the innominate artery. We implemented a mixed Eulerian-Lagrangian particle-tracking scheme to quantify the number of stroke-inducing particles reaching cerebral vessel outlets and included flow visualization through streamlines to identify regions of strong vorticity and flow stagnation, which can promote thrombus formation. Thrombi were modeled as spheres with perfectly elastic interactions numerically released randomly in time and space at cannula inlet plane. Based on clinical observation of the range of thrombus sizes encountered in such cases, particle diameters of 2.5mm and 3.5mm were investigated in our numerical computations. Pulsatile flow results for aforementioned angles suggest that a 90(&)deg; cannula implementation causes flow impingement on the left lateral aortic wall and appears to be highly thrombogenic due to large momentum losses and zones of large re-circulation and that shallow and intermediate cannula angles promote more regular flow carrying particles towards the lower body potentially reducing stroke risk. Indications from this pulsatile numerical study suggest that up to a 50% reduction in stroke rate can be achieve with tailoring of cannula implantation. Results are consistent with significant reduction in stroke incidence achieved by tailoring cannula implantation as reported in previous steady flow computations carried out by our group. As such, results of this study suggest that a simple surgical maneuver in the process of VAD implantation may significantly improve patient life.
Show less - Date Issued
- 2015
- Identifier
- CFE0005689, ucf:50129
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005689
- Title
- Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems.
- Creator
-
Groves, Curtis, Kassab, Alain, Das, Tuhin, Kauffman, Jeffrey, Moore, Brian, University of Central Florida
- Abstract / Description
-
Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data...
Show moreSpacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional (")validation by test only(") mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in (")Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations("). This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions. The method accounts for all uncertainty terms from both numerical and input variables. Objective three is to compile a table of uncertainty parameters that could be used to estimate the error in a Computational Fluid Dynamics model of the Environmental Control System /spacecraft system.Previous studies have looked at the uncertainty in a Computational Fluid Dynamics model for a single output variable at a single point, for example the re-attachment length of a backward facing step. For the flow regime being analyzed (turbulent, three-dimensional, incompressible), the error at a single point can propagate into the solution both via flow physics and numerical methods. Calculating the uncertainty in using Computational Fluid Dynamics to accurately predict airflow speeds around encapsulated spacecraft in is imperative to the success of future missions.
Show less - Date Issued
- 2014
- Identifier
- CFE0005174, ucf:50662
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005174
- Title
- AN EXPERIMENTAL AND NUMERICAL STUDY OF SECONDARY FLOWS AND FILM COOLING EFFECTIVENESS IN A TRANSONIC CASCADE.
- Creator
-
Kullberg, James, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
In the modern world, gas turbines are widely used in aircraft propulsion and electricity generation. These applications represent a massive use of energy worldwide, so even a very small increase in efficiency would have a significant beneficial economic and environmental impact. There are many ways to optimize the operation of a gas turbine, but a fundamental approach is to increase the turbine inlet temperature to increase the basic thermodynamic efficiency of the turbine. However, these...
Show moreIn the modern world, gas turbines are widely used in aircraft propulsion and electricity generation. These applications represent a massive use of energy worldwide, so even a very small increase in efficiency would have a significant beneficial economic and environmental impact. There are many ways to optimize the operation of a gas turbine, but a fundamental approach is to increase the turbine inlet temperature to increase the basic thermodynamic efficiency of the turbine. However, these temperatures are already well above the melting temperature of the components. A primary cooling methodology, called film cooling, creates a blanket of cool air over the surface and is an effective way to help protect these components from the hot mainstream gasses. This paper focuses on the effect of the film holes upstream of the first row of blades in the turbine because this is the section that experiences the highest thermal stresses. Many factors can determine the effectiveness of the film cooling, so a complete understanding can lead to effective results with the minimum flow rate of coolant air. Many studies have been published on the subject of film cooling, but because of the difficulty and expense of simulating turbine realistic conditions, many authors introduce vast simplifications such as low speed conditions or linear cascades. These simplifications do not adequately represent the behavior of a turbine and therefore their results are of limited use. This study attempts to eliminate many of those simplifications. The test rig used in this research is based on the NASA-GE E3 design, which stands for Energy Efficient Engine. It was introduced into the public domain to provide an advanced platform from which open-literature research could be performed. Experimental tests on a transonic annular rig are time-consuming and expensive, so it is desirable to use experimental results to validate a computational model which can then be used to extract much more information. The purpose of this work is to create a numerical model that can be used to simulate many different scenarios and then to apply these results to experimental data.
Show less - Date Issued
- 2011
- Identifier
- CFH0003772, ucf:44728
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0003772
- Title
- EFFECT OF CORIOLIS AND CENTRIFUGAL FORCES ON TURBULENCE AND TRANSPORT AT HIGH ROTATION AND BUOYANCY NUMBERS.
- Creator
-
Sleiti, Ahmad Khalaf, Kapat, Jay, University of Central Florida
- Abstract / Description
-
This study attempts to understand one of the most fundamental and challenging problems in fluid flow and heat transfer for rotating machines. The study focuses on gas turbines and electric generators for high temperature and high energy density applications, respectively, both which employ rotating cooling channels so that materials do not fail under high temperature and high stress environment.Prediction of fluid flow and heat transfer inside internal cooling channels that rotate at high...
Show moreThis study attempts to understand one of the most fundamental and challenging problems in fluid flow and heat transfer for rotating machines. The study focuses on gas turbines and electric generators for high temperature and high energy density applications, respectively, both which employ rotating cooling channels so that materials do not fail under high temperature and high stress environment.Prediction of fluid flow and heat transfer inside internal cooling channels that rotate at high rotation number and high density ratio similar to those that are existing in turbine blades and generator rotors is the main focus of this study. Both smooth-wall and rib-roughened channels are considered here. Rotation, buoyancy, bends, ribs and boundary conditions affect the flow inside theses channels. Introducing ribs inside internal cooling channel can enhance the heat transfer rate. As the introduction of ribs approach causes rapid increase in the severely limited pressure drop and requires high cost, other means of achieving high heat transfer rate are desired. Another approach to increase heat transfer rate to a values that are comparable to those achieved by introduction of ribs is to increase rotation number. One objective of this research is to study and compare theses two approaches in order to decide the optimum range of application and a possible replacement of the high-cost and complex ribs by increasing rotation number.A fully computational approach is employed in this study. On the basis of comparison between two-equation (k-e and k-w) and RSM turbulence models, it is concluded that the two-equation turbulence models cannot predict the flow field and heat transfer correctly, while RSM showed improved prediction. For the near wall region, two approaches with standard wall functions and enhanced near wall treatment were investigated. The enhanced near wall approach showed superior results to the standard wall functions approach. Thus RSM with enhanced near wall treatment is validated against available experimental data (which are primarily at low rotation and buoyancy numbers). The model was then used for cases with high rotation numbers (as much as 1.29) and high-density ratios (up to 0.4). Particular attention is given to how turbulence intensity, Reynolds stresses and transport are affected by Coriolis and buoyancy/centrifugal forces caused by high levels of rotation and density ratio. The results obtained are explained in view of physical interpretation of Coriolis and centrifugal forces. Investigation of channels with smooth and with rib-roughened walls that are rotating about an orthogonal axis showed that increasing rotation number always enhances turbulence and the heat transfer rate, while at high rotation numbers, increasing density ratio although causes higher turbulence activity but dose not increase Nu and in some locations even decreases Nu. The increasing thermal boundary layer thickness near walls is the possible reason for this behavior of Nu. The heat transfer enhancement correlates linearly with rotation number and hence it is possible to derive linear correlation for the increase in Nu as a function of Ro. Investigation of channels with rib-roughened walls that rotate about orthogonal axis showed that 4-side-average Nur correlates with Ro linearly, where a linear correlation for Nur/Nus as a function of rotation number is derived. It is also observed that the heat transfer rate on smooth-wall channel can be enhanced rapidly by increasing Ro to values that are comparable to the enhancement due to the introduction of ribs inside internal cooling channels. This observation suggests that ribs may be unnecessary in high-speed machines, and has tremendous implications for possible cost savings in these turbines.In square channels that are rotating about parallel axis, the heat transfer rate enhances by increasing Ro on three surfaces of the square channel and decreases on the fourth surface. Th
Show less - Date Issued
- 2004
- Identifier
- CFE0000014, ucf:52854
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000014
- Title
- EXPERIMENTAL AND CFD INVESTIGATIONS OF LIFTED TRIBRACHIAL FLAMES.
- Creator
-
li, zhiliang, Chen, Ruey-Hung, University of Central Florida
- Abstract / Description
-
Experimental measurements of the lift-off velocity and lift-off height, and numerical simulations were conducted on the liftoff and stabilization phenomena of laminar jet diffusion flames of inert-diluted C3H8 and CH4 fuels. Both non-reacting and reacting jets were investigated, including effects of multi-component diffusivities and heat release (buoyancy and gas expansion). The role of Schmidt number for non-reacting jets was investigated, with no conclusive Schmidt number criterion for...
Show moreExperimental measurements of the lift-off velocity and lift-off height, and numerical simulations were conducted on the liftoff and stabilization phenomena of laminar jet diffusion flames of inert-diluted C3H8 and CH4 fuels. Both non-reacting and reacting jets were investigated, including effects of multi-component diffusivities and heat release (buoyancy and gas expansion). The role of Schmidt number for non-reacting jets was investigated, with no conclusive Schmidt number criterion for liftoff previously known in similarity solutions. The cold-flow simulation for He-diluted CH4 fuel does not predict flame liftoff; however, adding heat release reaction leads to the prediction of liftoff, which is consistent with experimental observations. Including reaction was also found to improve liftoff height prediction for C3H8 flames, with the flame base location differing from that in the similarity solution - the intersection of the stoichiometric and iso-velocity contours is not necessary for flame stabilization (and thus lift-off). Possible mechanisms other than that proposed for similarity solution may better help to explain the stabilization and liftoff phenomena. The stretch rate at a wide range of isotherms near the base of the lifted tribrachial flame were also quantitatively plotted and analyzed.
Show less - Date Issued
- 2010
- Identifier
- CFE0003135, ucf:48621
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003135
- Title
- NUMERICAL MODELING OF THE SHOCK TUBE FLOW FIELDS BEFORE ANDDURING IGNITION DELAY TIME EXPERIMENTS AT PRACTICAL CONDITIONS.
- Creator
-
lamnaouer, mouna, Kassab, Alain, University of Central Florida
- Abstract / Description
-
An axi-symmetric shock-tube model has been developed to simulate the shock-wave propagation and reflection in both non-reactive and reactive flows. Simulations were performed for the full shock-tube geometry of the high-pressure shock tube facility at Texas A&M University. Computations were carried out in the CFD solver FLUENT based on the finite volume approach and the AUSM+ flux differencing scheme. Adaptive mesh refinement (AMR) algorithm was applied to the time-dependent flow fields to...
Show moreAn axi-symmetric shock-tube model has been developed to simulate the shock-wave propagation and reflection in both non-reactive and reactive flows. Simulations were performed for the full shock-tube geometry of the high-pressure shock tube facility at Texas A&M University. Computations were carried out in the CFD solver FLUENT based on the finite volume approach and the AUSM+ flux differencing scheme. Adaptive mesh refinement (AMR) algorithm was applied to the time-dependent flow fields to accurately capture and resolve the shock and contact discontinuities as well as the very fine scales associated with the viscous and reactive effects. A conjugate heat transfer model has been incorporated which enhanced the credibility of the simulations. The multi-dimensional, time-dependent numerical simulations resolved all of the relevant scales, ranging from the size of the system to the reaction zone scale. The robustness of the numerical model and the accuracy of the simulations were assessed through validation with the analytical ideal shock-tube theory and experimental data. The numerical method is first applied to the problem of axi-symmetric inviscid flow then viscous effects are incorporated through viscous modeling. The non-idealities in the shock tube have been investigated and quantified, notably the non-ideal transient behavior in the shock tube nozzle section, heat transfer effects from the hot gas to the shock tube side walls, the reflected shock/boundary layer interactions or what is known as bifurcation, and the contact surface/bifurcation interaction resulting into driver gas contamination. The non-reactive model is shown to be capable of accurately simulating the shock and expansion wave propagations and reflections as well as the flow non-uniformities behind the reflected shock wave. Both the inviscid and the viscous non-reactive models provided a baseline for the combustion model iii which involves elementary chemical reactions and requires the coupling of the chemistry with the flow fields adding to the complexity of the problem and thereby requiring tremendous computational resources. Combustion modeling focuses on the ignition process behind the reflected shock wave in undiluted and diluted Hydrogen test gas mixtures. Accurate representation of the Shock ÃÂtube reactive flow fields is more likely to be achieved by the means of the LES model in conjunction with the EDC model. The shock-tube CFD model developed herein provides valuable information to the interpretation of the shock-tube experimental data and to the understanding of the impact the facility-dependent non-idealities can have on the ignition delay time measurements.
Show less - Date Issued
- 2010
- Identifier
- CFE0003011, ucf:48366
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003011
- Title
- Computational Fluid Dynamics Proof of Concept and Analysis of a Self-Powered Fontan Circulation.
- Creator
-
Ni, Marcus, Kassab, Alain, Divo, Eduardo, Chopra, Manoj, University of Central Florida
- Abstract / Description
-
The Fontan circulation is a result of the last (third stage) surgical procedure to correct a single ventricle congenital cardiac disorder in children. Although the Fontan circulation has been successfully established in surgeries over the years, it is flawed and can lead in certain cases to pre-mature death. The main cause of this failure is due to increased pulmonary vascular resistance due to loss pulse pressure and blood flow. In healthy circulations, the heart pumps directly to the lungs,...
Show moreThe Fontan circulation is a result of the last (third stage) surgical procedure to correct a single ventricle congenital cardiac disorder in children. Although the Fontan circulation has been successfully established in surgeries over the years, it is flawed and can lead in certain cases to pre-mature death. The main cause of this failure is due to increased pulmonary vascular resistance due to loss pulse pressure and blood flow. In healthy circulations, the heart pumps directly to the lungs, where as (")Single Ventricle(") patients must use a single sided heart to supply blood to the rest of the body before the lungs. Improvements to the Fontan circulation have been proposed, but they require extensive care or external devices. We propose a (")Self-Powered(") Fontan circulation that will inject energy into the pulmonary system by adding an injection jet shunt (IJS) directly from the heart. The IJS will provide the pulse pressure, blood flow, and entrainment that the pulmonary vascular system needs to function at a healthy level. The difference between a healthy and sick Fontan circulation is 3-5[mmHg] in the IVC. The goal of the IJS is to cause this 3-5[mmHg] pressure drop in the IVC. In the analysis of the Fontan, ascertaining energy losses due to flow jet impingements and flow mixing is critical. Moreover, in order to better understand surgical alternatives is it important to have a robust multi-scale 0D-3D CFD analysis tool that permits investigation of surgical alternatives in a virtual physics-based environment. To this end, a lumped parameter model (LPM) is tightly coupled at the time step level with a full 3D computational fluid dynamics (CFD) model. Using this model scheme, the Fontan test section is no longer being modeled by the LPM. Therefore, it is not limited by the 0D nature of the vascular resistance, capacitance, and inertia bed model. The CFD can take over at the area of interest which accounts for flow directionality and momentum transfer that the LPM is unable to capture. To efficiently calculate optimal IJS configurations, a closed loop steady state model was created to solve a simplified Fontan circulation in 3D. Three models were created with several different optimized configurations, a synthetic model (average dimensions of 2-4 year-old Fontan patients), and two patient-specific models (10 and 24-year-old). The model configurations include changes in the IJS nozzle diameter and IJS placement along the pulmonary artery. These configurations are compared to a baseline model with no IJS. All three models suggest that the IJS helps to decrease IVC pressure while increasing pulse pressure and blood flow to the pulmonary system.
Show less - Date Issued
- 2017
- Identifier
- CFE0006630, ucf:51303
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006630
- Title
- Multi-Physics Model of Key Components In High Efficiency Vehicle Drive.
- Creator
-
Lin, Shao Hua, Wu, Xinzhang, Sundaram, Kalpathy, Wahid, Parveen, Wei, Lei, Chow, Louis, University of Central Florida
- Abstract / Description
-
Hybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) are crucial technologies for the automotive industry to meet society's demands for cleaner, more energy efficient transportation. Meeting the need to provide power which sustains HEVs and EVs is an immediate area of concern that research and development within the automotive community must address. Electric batteries and electrical motors are the key components in HEV and EV power generation and transmission, and their performance...
Show moreHybrid Electric Vehicles (HEVs) and Electric Vehicles (EVs) are crucial technologies for the automotive industry to meet society's demands for cleaner, more energy efficient transportation. Meeting the need to provide power which sustains HEVs and EVs is an immediate area of concern that research and development within the automotive community must address. Electric batteries and electrical motors are the key components in HEV and EV power generation and transmission, and their performance plays very important role in the overall performance of the modern high efficiency vehicles. Therefore, in this dissertation, we are motivated to study the electric batteries, interior permanent motor (IPM), in the context of modern hybrid electric/electric drive systems, from both multi-physics and system level perspectives. Electrical circuit theory, electromagnetic Finite Element Analysis (FEA), and Computational Fluid Dynamic (CFD) finite volume method will be used primarily in this work. The work has total of five parts, and they are introduced in the following.Firstly, Battery thermal management design is critical in HEV and EV development. Accurate temperature distribution of the battery cells during vehicle operation is required for achieving optimized design. We propose a novel electrical-thermal battery modeling technique that couples a temperature dependent battery circuit model and a physics-based CFD model to meet this need. The electrical circuit model serves as a heat generation mechanism for the CFD model, and the CFD model provides the temperature distribution of the battery cells, which can also impact the heat generation of the electrical battery model. In this part of work, simulation data has been derived from the model respective to electrical performance of the battery as well as the temperature distribution simultaneously in consideration of the physical dimensions, material properties, and cooling conditions. The proposed model is validated against a battery model that couples the same electrical model with a known equivalent thermal model.Secondly, we propose an accurate system level Foster network thermal model. The parameters of the model are extracted from step responses of the CFD battery thermal model. The Foster network model and the CFD model give the same results. The Foster network can couple with battery circuit model to form an electric-thermal battery model for system simulation.Thirdly, IPM electric machines are important in high performance drive systems. During normal operations, irreversible demagnetization can occur due to temperature rise and various loading conditions. We investigate the performance of an IPM using 3d time stepping electromagnetic FEA considering magnet's temperature dependency. Torque, flux linkage, induced voltage, inductance and saliency of the IPM will be studied in details. Finally, we use CFD to predict the non-uniform temperature distribution of the IPM machine and the impact of this distribution on motor performance. Fourthly, we will switch gear to investigate the IPM motor on the system level. A reduced order IPM model is proposed to consider the effect of demagnetization of permanent magnet due to temperature effect. The proposed model is validated by comparing its results to the FEA results.Finally, a HEV is a vehicle that has both conventional mechanical (i.e. internal combustion engine) and electrical propulsion systems. The electrical powertrain is used to work with the conventional powertrain to achieve higher fuel economy and lower emissions. Computer based modeling and simulation techniques are therefore essential to help reduce the design cost and optimize system performance. Due to the complexity of hybrid vehicles, multi-domain modeling ability is preferred for both component modeling and system simulation. We present a HEV library developed using VHDL-AMS.
Show less - Date Issued
- 2013
- Identifier
- CFE0005024, ucf:50016
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005024
- Title
- COMPUTATIONAL FLUID DYNAMICS INVESTIGATION OF THE ORIENTATION OF A PEDIATRIC LEFT VENTRICLE ASSIST DEVICE CANNULA TO REDUCE STROKE EVENTS.
- Creator
-
Guimond, Stephen, Kassab, Alain, University of Central Florida
- Abstract / Description
-
Ventricle Assist Devices (VADs), which are typically either axial or centrifugal flow pumps implanted on the aortic arch, have been used to support patients who are awaiting cardiac transplantation. Success of the apparatus in the short term has led to long term use. Despite anticoagulation measures, blood clots (thrombi) have been known to form in the device itself or inside of the heart. The Ventricle Assist Devices supply blood flow via a conduit (cannula) implanted on the ascending aorta....
Show moreVentricle Assist Devices (VADs), which are typically either axial or centrifugal flow pumps implanted on the aortic arch, have been used to support patients who are awaiting cardiac transplantation. Success of the apparatus in the short term has led to long term use. Despite anticoagulation measures, blood clots (thrombi) have been known to form in the device itself or inside of the heart. The Ventricle Assist Devices supply blood flow via a conduit (cannula) implanted on the ascending aorta. Currently, the implantation angle of the VAD cannula is not taken into consideration. Since the VADs supply a significant amount of blood flow to the aorta, the implantation angle can greatly affect the trajectory of the formed thrombi as well as the cardiac flow field inside of the aortic arch. This study aims to vary the implantation angle of a pediatric Left Ventricle Assist Device (LVAD) through a series of computational fluid dynamics (CFD) software simulations focusing on the aortic arch and its branching arteries of a 20 kg pediatric patient in order to reduce the occurrence of stroke.
Show less - Date Issued
- 2012
- Identifier
- CFH0004305, ucf:45044
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004305
- Title
- Fluid Dynamics Modeling and Sound Analysis of a Bileaflet Mechanical Heart Valve.
- Creator
-
Khalili, Fardin, Mansy, Hansen, Kassab, Alain, Steward, Robert, Zaurin, Ricardo, University of Central Florida
- Abstract / Description
-
Cardiovascular disease (CVD) is one of the main causes of death in the world. Some CVD involve severe heart valve disease that require valve replacement. There are more than 300,000 heart valves implanted worldwide, and about 85,000 heart valve replacements in the US. Approximately half of these valves are mechanical. Artificial valves may dysfunction leading to adverse hemodynamic conditions. Understanding the normal and abnormal valve function is important as it help improve valve designs....
Show moreCardiovascular disease (CVD) is one of the main causes of death in the world. Some CVD involve severe heart valve disease that require valve replacement. There are more than 300,000 heart valves implanted worldwide, and about 85,000 heart valve replacements in the US. Approximately half of these valves are mechanical. Artificial valves may dysfunction leading to adverse hemodynamic conditions. Understanding the normal and abnormal valve function is important as it help improve valve designs. Modeling of heart valve hemodynamics using computational fluid dynamics (CFD) provides a comprehensive analysis of flow, which can potentially help explain clinical observations and support therapeutic decision-making. This detailed information might not be accessible with in-vivo measurements. On the other hand, finite element analysis (FEA), is an efficient way to analyze the interactions of blood flow with blood vessel and tissue layers. In this project both CFD and FEA simulations were performed to investigate the flow-induced sound generation and propagation of sound waves through a tissue-like material. This method is based on mapping the transient pressure (force) fluctuations on the vessel wall and solving for the structural vibrations in the frequency domain. These vibrations would then be detected as sound on the epidermal surface. Advantages of the methods used in the current study include: (a) capability of providing accurate solution with a faster solution time; (b) inclusion of the fluid(-)structure interaction between blood flow and the arterial wall; and (c) accurately capturing some of the spectral features of the velocity fluctuation measured over the epidermal surface.
Show less - Date Issued
- 2018
- Identifier
- CFE0007029, ucf:52038
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007029
- Title
- Hybrid Multi-Objective Optimization of Left Ventricular Assist Device Outflow Graft Anastomosis Orientation to Minimize Stroke Rate.
- Creator
-
Lozinski, Blake, Kassab, Alain, Mansy, Hansen, DeCampli, William, University of Central Florida
- Abstract / Description
-
A Left Ventricular Assist Device (LVAD) is a mechanical pump that is utilized as a bridge to transplantation for patients with a Heart Failure (HF) condition. More recently, LVADs have been also used as destination therapy and have provided an increase in the quality of life for patients with HF. However, despite improvements in VAD design and anticoagulation treatment, there remains a significant problem with VAD therapy, namely drive line infection and thromboembolic events leading to...
Show moreA Left Ventricular Assist Device (LVAD) is a mechanical pump that is utilized as a bridge to transplantation for patients with a Heart Failure (HF) condition. More recently, LVADs have been also used as destination therapy and have provided an increase in the quality of life for patients with HF. However, despite improvements in VAD design and anticoagulation treatment, there remains a significant problem with VAD therapy, namely drive line infection and thromboembolic events leading to stroke. This thesis focuses on a surgical maneuver to address the second of these issues, guided by previous steady flow hemodynamic studies that have shown the potential of tailoring the VAD outflow graft (VAD-OG) implantation in providing up to 50% reduction in embolization rates. In the current study, multi-scale pulsatile hemodynamics of the VAD bed is modeled and integrated in a fully automated multi-objective shape optimization scheme in which the VAD-OG anastomosis along the Ascending Aorta (AA) is optimized to minimize the objective function which include thromboembolic events to the cerebral vessels and wall shear stress (WSS). The model is driven by a time dependent pressure and flow boundary conditions located at the boundaries of the 3D domain through a 50 degree of freedom 0D lumped parameter model (LPM). The model includes a time dependent multi-scale Computational Fluid Dynamics (CFD) analysis of a patient specific geometry. Blood rheology is modeled as using the non-Newtonian Carreua-Yasuda model, while the hemodynamics are that of a laminar and constant density fluid. The pulsatile hemodynamics are resolved using the commercial CFD solver StarCCM+ while a Lagrangian particle tracking scheme is used to track constant density particles modeling thromobi released from the cannula to determine embolization rated of thrombi. The results show that cannula anastomosis orientation plays a large role when minimizing the objective function for patient derived aortic bed geometry used in this study. The scheme determined the optimal location of the cannula is located at 5.5 cm from the aortic root, cannula angle at 90 degrees and coronal angle at 8 degrees along the AA with a peak surface average WSS of 55.97 dy/cm2 and stroke percentile of 12.51%. A Pareto front was generated showing the range of 9.7% to 44.08% for stroke and WSS of 55.97 to 81.47 dy/cm2 ranged over 22 implantation configurations for the specific case studied. These results will further assist in the treatment planning for clinicians when implementing a LVAD.
Show less - Date Issued
- 2019
- Identifier
- CFE0007833, ucf:52827
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007833