Current Search: CO oxidation (x)
View All Items
- Title
- IN-SITU GAS PHASE CATALYTIC PROPERTIES OF METAL NANOPARTICLES.
- Creator
-
Ono, Luis, Roldan Cuenya, Beatriz, University of Central Florida
- Abstract / Description
-
Recent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research,...
Show moreRecent advances in surface science technology have opened new opportunities for atomic scale studies in the field of nanoparticle (NP) catalysis. The 2007 Nobel Prize of Chemistry awarded to Prof. G. Ertl, a pioneer in introducing surface science techniques to the field of heterogeneous catalysis, shows the importance of the field and revealed some of the fundamental processes of how chemical reactions take place at extended surfaces. However, after several decades of intense research, fundamental understanding on the factors that dominate the activity, selectivity, and stability (life-time) of nanoscale catalysts are still not well understood. This dissertation aims to explore the basic processes taking place in NP catalyzed chemical reactions by systematically changing their size, shape, oxide support, and composition, one factor at a time. Low temperature oxidation of CO over gold NPs supported on different metal oxides and carbides (SiO2, TiO2, TiC, etc.) has been used as a model reaction. The fabrication of nanocatalysts with a narrow size and shape distribution is essential for the microscopic understanding of reaction kinetics on complex catalyst systems ("real-world" systems). Our NP synthesis tools are based on self-assembly techniques such as diblock-copolymer encapsulation and nanosphere lithography. The morphological, electronic and chemical properties of these nanocatalysts have been investigated by atomic force microscopy (AFM), scanning tunneling microscopy (STM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). Chapter 1 describes briefly the basic principles of the instrumentation used within this experimental dissertation. Since most of the state-of-art surface science characterization tools provide ensemble-averaged information, catalyst samples with well defined morphology and structure must be available to be able to extract meaningful information on how size and shape affect the physical and chemical properties of these structures. In chapter 2, the inverse-micelle encapsulation and nanosphere lithography methods used in this dissertation for synthesizing uniformly arranged and narrow size- and shape-selected spherical and triangular NPs are described. Chapter 3 describes morphological changes on individual Au NPs supported on SiO2 as function of the annealing temperature and gaseous environment. In addition, NP mobility is monitored. Chapter 4 explores size-effects on the electronic and catalytic properties of size-selected Au NPs supported on a transition metal carbide, TiC. The effect of interparticle interactions on the reactivity and stability (catalyst lifetime) of Au NPs deposited on TiC is discussed in chapter 5. Size and support effects on the formation and thermal stability of Au2O3, PtO and PtO2 on Au and Pt NPs supported on SiO2, TiO2 and ZrO2 is investigated in chapter 6. Emphasis is given to gaining insight into the role of the NP/support interface and that played by oxygen vacancies on the stability of the above metal oxides. Chapter 7 reports on the formation, thermal stability, and vibrational properties of mono- and bimetallic AuxFe1-x (x = 1, 0.8, 0.5, 0.2, 0) NPs supported on TiO2(110). At the end of the thesis, a brief summary describes the main highlights of this 5-year research program.
Show less - Date Issued
- 2009
- Identifier
- CFE0002940, ucf:47962
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002940
- Title
- Design, Development, and Testing of a Miniature Fixture for Uniaxial Compression of Ceramics Coupled with In-Situ Raman Spectrometer.
- Creator
-
Jordan, Ryan, Orlovskaya, Nina, Kwok, Kawai, Ghosh, Ranajay, University of Central Florida
- Abstract / Description
-
This thesis is about the design, development and integration of an in-situ compression stage which interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman spectrometer. This combined compression stage and Raman system will enable structural characterization of ceramics and ceramic composites. The in-situ compression stage incorporates a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. Two load screws that allow to...
Show moreThis thesis is about the design, development and integration of an in-situ compression stage which interfaces through the Leica optical microscope coupled with a Renishaw InVia micro-Raman spectrometer. This combined compression stage and Raman system will enable structural characterization of ceramics and ceramic composites. The in-situ compression stage incorporates a 440C stainless steel structural components, 6061 aluminum frame, a NEMA 23 stepper motor. Two load screws that allow to apply compressive loads up to 14,137 N, with negligible off axis loading, achieving target stresses of 500 MPa for samples of up to 6.00 mm in diameter. The system will be used in the future to study the structural changes in ceramics and ceramic composites, as well as to study thermal residual stress redistribution under applied compressive loads. A broad variety of Raman active ceramics, including the traditional structural ceramics 3mol%Y2O3-ZrO2, B4C, SiC, Si3N4, as well as exotic materials such as LaCoO3 and other perovskites will be studied using this system. Calibration of the systems load cell was performed in the configured state using MTS universal testing machines. To ensure residual stresses from mounting the load cell did not invalidate the original calibration, the in-situ compression stage was tested once attached to the Renishaw Raman spectrometer using LaCoO3 ceramic samples. The Raman shift of certain peaks in LaCoO3 was detected indicative of the effect of the applied compressive stress on the ceramics understudy.
Show less - Date Issued
- 2019
- Identifier
- CFE0007824, ucf:52809
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007824