Current Search: Microsimulation (x)
View All Items
- Title
- Applications of Transit Signal Priority Technology for Transit Service.
- Creator
-
Consoli, Frank, Al-Deek, Haitham, Oloufa, Amr, Tatari, Omer, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
This research demonstrated the effectiveness of Transit Signal Priority (TSP) in improving bus corridor travel time in a simulated environment using real world data. TSP is a technology that provides preferential treatment to buses at signalized intersections. By considering different scenarios of activating bus signal priority when a bus is 3 or 5 minutes behind schedule, it was demonstrated that bus travel times improved significantly while there is little effect on delays for crossing...
Show moreThis research demonstrated the effectiveness of Transit Signal Priority (TSP) in improving bus corridor travel time in a simulated environment using real world data. TSP is a technology that provides preferential treatment to buses at signalized intersections. By considering different scenarios of activating bus signal priority when a bus is 3 or 5 minutes behind schedule, it was demonstrated that bus travel times improved significantly while there is little effect on delays for crossing street traffic. The case of providing signal priority for buses unconditionally resulted in significant crossing street delays for some signalized intersections with only minor improvement to bus travel time over both scenarios of Conditional priority.Evaluation was conducted by using micro-simulation and statistical analysis to compare Unconditional and Conditional TSP with the No TSP scenario. This evaluation looked at performance metrics (for buses and all vehicles) including average speed profiles, average travel times, average number of stops, and crossing street delay. Different Conditional TSP scenarios of activating TSP when a bus is 3 or 5 minutes behind schedule were considered. The simulation demonstrated that Conditional TSP significantly improved bus travel times with little effect on crossing street delays. The results also showed that utilizing TSP technology reduced the environmental emissions in the I-Drive corridor. Furthermore, field data was used to calculate actual passenger travel time savings and benefit cost ratio (7.92) that resulted from implementing conditional TSP. Conditional TSP 3 minutes behind schedule was determined to be the most beneficial and practical TSP scenario for real world implementation at both the corridor and regional levels.
Show less - Date Issued
- 2014
- Identifier
- CFE0005474, ucf:50343
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005474
- Title
- EVALUATING RAMP METERING AND VARIABLE SPEED LIMITS TO REDUCE CRASH POTENTIAL ON CONGESTED FREEWAYS USING MICRO-SIMULATION.
- Creator
-
Dhindsa, Albinder, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
Recent research at UCF into defining surrogate measures for identifying crash prone conditions on freeways has led to the introduction of several statistical models which can flag such conditions with a good degree of accuracy. Outputs from these models have the potential to be used as real-time safety measures on freeways. They may also act as the basis for the evaluation of several intervention strategies that might help in the mitigation of risk of crashes. Ramp Metering and Variable Speed...
Show moreRecent research at UCF into defining surrogate measures for identifying crash prone conditions on freeways has led to the introduction of several statistical models which can flag such conditions with a good degree of accuracy. Outputs from these models have the potential to be used as real-time safety measures on freeways. They may also act as the basis for the evaluation of several intervention strategies that might help in the mitigation of risk of crashes. Ramp Metering and Variable Speed Limits are two approaches which have the potential of becoming effective implementation strategies for improving the safety conditions on congested freeways. This research evaluates both these strategies in different configurations and attempts to quantify their effect on risk of crash on a 9-mile section of Interstate-4 in the Orlando metropolitan region. The section consists of 17 Loop Detector stations, 11 On-ramps and 10 off-ramps. PARAMICS micro-simulation is used as the tool for modeling the freeway section. The simulated network is calibrated and validated for 5 minute average flows and speeds using loop detector data. Feedback Ramp Metering algorithm, ALINEA, is used for controlling access from up to 7 on-ramps. Variable Speed Limits are implemented based on real-time speed conditions prevailing in the whole 9-mile section. Both these strategies are tested separately as well as collectively to determine the individual effects of all the parameters involved. The results have been used to formulate and recommend the best possible strategy for minimizing the risk of crashes on the corridor. The study concluded that Ramp Metering improves the conditions on the freeway in terms of safety by decreasing variance in speeds and decreasing average occupancy. A safety benefit index was developed for quantifying the reduction in crash risk and it indicated that an optimal implementation strategy might produce benefits of up to 55%. The condition on the freeway section improved with increase in the number of metered ramps. It was also observed that shorter signal cycles for metered ramps were more suitable for metering multiple ramps. Ramp Metering at multiple locations also decreased the segment wide travel-times by 5% and was even able to offset the delays incurred by drivers at the metered on-ramps. Variable Speed Limits (VSL) were individually not as effective as ramp metering but when implemented along with ramp metering, they were found to further improve the safety on the freeway section under consideration. By means of a detailed experimental design it was observed that the best strategy for introducing speed limit changes was to raise the speed limits downstream of the location of interest by 5 mph and not affecting the speed limits upstream. A coordinated strategy - involving simultaneous application of VSL and Ramp Metering - provided safety benefits of up to 56 % for the study section according to the safety benefit index. It also improved the average speeds on the network besides decreasing the overall network travel time by as much as 21%.
Show less - Date Issued
- 2005
- Identifier
- CFE0000913, ucf:46741
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000913
- Title
- EXAMINING ROUTE DIVERSION AND MULTIPLE RAMP METERING STRATEGIES FOR REDUCING REAL-TIME CRASH RISK ON URBAN FREEWAYS.
- Creator
-
Gayah, Vikash, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
Recent research at the University of Central Florida addressing crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical models capable of calculating the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models yield the rear-end and lane-change crash risk along the freeway in real-time by using static information at various locations along the freeway as well as real-time traffic data that is obtained from the roadway....
Show moreRecent research at the University of Central Florida addressing crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical models capable of calculating the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models yield the rear-end and lane-change crash risk along the freeway in real-time by using static information at various locations along the freeway as well as real-time traffic data that is obtained from the roadway. Because these models use the real-time traffic data, they are capable of calculating the respective crash risk values as the traffic flow changes along the freeway. The purpose of this study is to examine the potential of two Intelligent Transportation System strategies for reducing the crash risk along the freeway by changing the traffic flow parameters. The two ITS measures that are examined in this research are route diversion and ramp metering. Route diversion serves to change the traffic flow by keeping some vehicles from entering the freeway at one location and diverting them to another location where they may be more efficiently inserted into the freeway traffic stream. Ramp metering alters the traffic flow by delaying vehicles at the freeway on-ramps and only allowing a certain number of vehicles to enter at a time. The two strategies were tested by simulating a 36.25 mile section of the Interstate-4 network in the PARAMICS micro-simulation software. Various implementations of route diversion and ramp metering were then tested to determine not only the effects of each strategy but also how to best apply them to an urban freeway. Route diversion was found to decrease the overall rear-end and lane-change crash risk along the network at free-flow conditions to low levels of congestion. On average, the two crash risk measures were found to be reduced between the location where vehicles were diverted and the location where they were reinserted back into the network. However, a crash migration phenomenon was observed at higher levels of congestion as the crash risk would be greatly increased at the location where vehicles were reinserted back onto the network. Ramp metering in the downtown area was found to be beneficial during heavy congestion. Both coordinated and uncoordinated metering algorithms showed the potential to significantly decrease the crash risk at a network wide level. When the network is loaded with 100 percent of the vehicles the uncoordinated strategy performed the best at reducing the rear-end and lane-change crash risk values. The coordinated strategy was found to perform the best from a safety and operational perspective at moderate levels of congestion. Ramp metering also showed the potential for crash migration so care must be taken when implementing this strategy to ensure that drivers at certain locations are not put at unnecessary risk. When ramp metering is applied to the entire freeway network both the rear-end and lane-change crash risk is decreased further. ALINEA is found to be the best network-wide strategy at the 100 percent loading case while a combination of Zone and ALINEA provides the best safety results at the 90 percent loading case. It should also be noted that both route diversion and ramp metering were found to increase the overall network travel time. However, the best route diversion and ramp metering strategies were selected to ensure that the operational capabilities of the network were not sacrificed in order to increase the safety along the freeway. This was done by setting the maximum allowable travel time increase at 5% for any of the ITS strategies considered.
Show less - Date Issued
- 2006
- Identifier
- CFE0001437, ucf:47054
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001437
- Title
- A Framework for Assessing Sustainability Impacts of Truck Routing Strategies.
- Creator
-
Laman, Haluk, Abdel-Aty, Mohamed, Tatari, Omer, Ahmed, Mohamed, University of Central Florida
- Abstract / Description
-
The impact of freight on our transportation system is further accentuated by the fact that trucks consume greater roadway capacity and therefore cause more significant problems including traffic congestion, delay, crashes, air pollution, fuel consumption, and pavement damage. Assessing the actual effects of truck traffic is a growing need to support the ability to safely and efficiently move goods and people in areas where roadway expansion is not the best option. On one hand, trucks need to...
Show moreThe impact of freight on our transportation system is further accentuated by the fact that trucks consume greater roadway capacity and therefore cause more significant problems including traffic congestion, delay, crashes, air pollution, fuel consumption, and pavement damage. Assessing the actual effects of truck traffic is a growing need to support the ability to safely and efficiently move goods and people in areas where roadway expansion is not the best option. On one hand, trucks need to efficiently serve commerce and industry, while at the same time their activities need not contribute to a decline in the quality or public safety. In the current practice, to the best of the authors' knowledge, there is no framework methodology for real-time management of traffic, specifically on truck routes, to reduce travel duration and avoid truck travel delays due to non-recurring congestion (i.e. traffic incidents) and to estimate impacts on traffic flows, economy, and environment. The objective of this study is to develop a truck routing strategy and to quantify its' impacts on travel time, emissions and consequently assess the effects on the economy and environment. In order to estimate non-recurrent congestion based travel delay and fuel consumption by real-time truck routing simulation models, significant corridors with high truck percentages were selected. Furthermore, tailpipe emissions (on-site) due to traveled distance and idling are estimated via MOVES emissions simulator software. Economic Input Output-Life Cycle Assessment Model is utilized to gather fuel consumption related upstream (off-site) emissions. Simulation results of various scenarios indicated that potential annual value of time savings can reach up to $1.67 million per selected corridor. Consistently, fuel costs and emission values are lower, even though extra miles are traveled on the alternative route. In conclusion, our study confirms that truck routing strategies in incident conditions have high economic and environmental impacts.
Show less - Date Issued
- 2018
- Identifier
- CFE0007577, ucf:52570
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007577
- Title
- Improving Traffic Safety at School Zones by Engineering and Operational Countermeasures.
- Creator
-
Rahman, Md Hasibur, Abdel-Aty, Mohamed, Lee, JaeYoung, Zaki Hussein, Mohamed, University of Central Florida
- Abstract / Description
-
Safety issues at school zone areas have been one of the most important topics in the traffic safety field. Although many studies have evaluated the effectiveness of various traffic control devices (e.g., sign, flashing beacon, speed monitoring display), there is a lack of studies exploring different roadway countermeasures and the relationship between school-related factors and crashes. In this study, the most crash-prone school zone was identified in Orange and Seminole Counties, Florida,...
Show moreSafety issues at school zone areas have been one of the most important topics in the traffic safety field. Although many studies have evaluated the effectiveness of various traffic control devices (e.g., sign, flashing beacon, speed monitoring display), there is a lack of studies exploring different roadway countermeasures and the relationship between school-related factors and crashes. In this study, the most crash-prone school zone was identified in Orange and Seminole Counties, Florida, based on crash rate. Afterward, a microsimulation network was built in VISSIM environment to test different roadway countermeasures in the school zones. Three different countermeasures: two-step speed reduction (TSR), decreasing the number of driveways (DD), and replacing the two-way left-turn lane (TWLTL) to the raised median (RM) were implemented in the microsimulation. Three surrogate safety measures-: (1) time exposed time to collision (TET), (2) time integrated time to collision (TIT) and (3) time exposed rear-end crash risk index (TERCRI) were utilized in this study as indicators for safety evaluation. The higher value of surrogate safety measures indicates higher crash risk. The results showed that both TSR and DD reduced TET, TIT and TERCRI values significantly compare to the base condition. Moreover, the combination of TSR and DD countermeasures outperformed their individual effectiveness. The One-way ANOVA analysis showed that all the sub-scenarios were significantly different from each other. Sensitivity analysis result has proved that all the sub-scenarios in TSR and DD reduced TET, TIT and TERCRI values significantly for different value of TTC threshold. On the other hand, for converting the TWLTL to RM, the crash risk was higher than the base condition because of the turning movements of vehicle. The results of this study could help transportation planners and decision makers to understand the effect of these countermeasures to improve safety at school zones.
Show less - Date Issued
- 2019
- Identifier
- CFE0007708, ucf:52409
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007708