Current Search: Ramp Metering (x)
View All Items
- Title
- EXPLORING THE POTENTIAL OF COMBINING RAMP METERING AND VARIABLE SPEED LIMIT STRATEGIES FOR ALLEVIATING REAL-TIME CRASH RISK ON URBAN FREEWAYS.
- Creator
-
Haleem, Kirolos, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
Research recently conducted at the University of Central Florida involving crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical and neural networks models that are capable of determining the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models are able to calculate rear-end and lane-change crash risks along the freeway in real-time through the use of static information at various locations along the freeway as well...
Show moreResearch recently conducted at the University of Central Florida involving crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical and neural networks models that are capable of determining the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models are able to calculate rear-end and lane-change crash risks along the freeway in real-time through the use of static information at various locations along the freeway as well as real-time traffic data obtained by loop detectors. Since these models use real-time traffic data, they are capable of calculating rear-end and lane-change crash risk values as the traffic flow conditions are changing on the freeway. The objective of this study is to examine the potential benefits of combining two ITS strategies (Ramp Metering and Variable Speed Limits strategies) for reducing the crash risk (both rear-end and lane-change crash risks) along the I-4 freeway. Following this aspect, a 36.25-mile section of I-4 running though Orlando, FL was simulated using the PARAMICS micro-simulation program. Gayah (2006) used the same network to examine the potential benefits of two ITS strategies separately (Route Diversion and Ramp Metering) for reducing the crash risk along the freeway by changing traffic flow parameters. Cunningham (2007) also used the same network to examine the potential benefits of implementing Variable Speed Limits strategy for reducing the crash risk along the freeway. Since the same network is used, the calibration and validation procedures used in this study are the same as these previous two studies. This study simulates three volume loading scenarios on the I-4 freeway. These are 60, 80 and 90 percent loading scenarios. From the final experimental design for the 60 % loading, it was concluded that implementing VSL strategy only was more beneficial to the network than either implementing Ramp Metering everywhere (through the whole network) in conjunction with VSL everywhere or implementing Ramp Metering downtown (in downtown areas only) in conjunction with VSL everywhere. This was concluded from the comparison of the results of this study with the results from Cunningham (2007). However, either implementing Ramp Metering everywhere or downtown in conjunction with VSL everywhere showed safety benefits across the simulated network as well as a reduction in the total travel time. The best case for implementing Ramp Metering everywhere in conjunction with VSL everywhere was using a homogeneous speed zone threshold of 2.5 mph, a speed change distance of half speed zone and a speed change time of 5 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. And the best case for implementing Ramp Metering downtown in conjunction with VSL everywhere was using a homogeneous speed zone threshold of 2.5 mph, a speed change distance of half speed zone and a speed change time of 10 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. For the 80 % loading, it was concluded that either implementing Ramp Metering everywhere in conjunction with VSL everywhere or implementing Ramp Metering downtown in conjunction with VSL everywhere was more beneficial to the network than implementing VSL strategy only. This was also concluded from the comparison of the results of this study with the results from Cunningham (2007). Moreover, it was concluded that implementing Ramp Metering everywhere in conjunction with VSL everywhere showed higher safety benefits across the simulated network than implementing Ramp Metering downtown in conjunction with VSL everywhere. Also, both of them increased the total travel time a bit, but this was deemed acceptable. Additionally, both of them had successive fluctuations and variations in the average lane-change crash risk vs. time step. The best case for implementing Ramp Metering everywhere in conjunction with VSL everywhere was using a homogeneous speed zone threshold of 5 mph, a speed change distance of half speed zone and a speed change time of 30 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. And the best case for implementing Ramp Metering downtown in conjunction with VSL everywhere was using a homogeneous speed zone threshold of 5 mph, a speed change distance of half speed zone and a speed change time of 30 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. Searching for the best way to implement both Ramp Metering and VSL strategies in conjunction with each other, an indepth investigation was conducted in order to remove the fluctuations and variations in the crash risk with time step (through the entire simulation period). The entire simulation period is 3 hours, and each time step is 5 minutes, so there are 36 time steps representing the entire simulation period. This indepth investigation led to the idea of not implementing VSL at consecutive zones (using either a gap of one zone or more). Then this idea was applied for the best case of implementing Ramp Metering and VSL everywhere at the 80 % loading, and the successive fluctuations and variations in the crash risk with time step were removed. Moreover, much better safety benefits were found. So, this confirms that this idea was very beneficial to the network. For the 90 % loading, it was concluded that implementing Ramp Metering strategy only (Zone algorithm in downtown areas, and ALINEA algorithm in non downtown areas) was more beneficial to the network than implementing Ramp Metering everywhere in conjunction with VSL everywhere. This was concluded from the comparison of the results of this study with the results from Gayah (2006). However, implementing Ramp Metering everywhere in conjunction with VSL everywhere showed safety benefits across the simulated network as well as a reduction in the total travel time. The best case was using a homogeneous speed zone threshold of 2.5 mph, a speed change distance of the entire speed zone and a speed change time of 20 minutes in conjunction with a 60 seconds cycle length for the Zone algorithm, a critical occupancy of 0.17 and a 30 seconds cycle length for the ALINEA algorithm. In summary, Ramp Metering was more beneficial at congested situations, while Variable Speed Limits were more beneficial at free-flow conditions. At conditions approaching congestion, the combination of Ramp Metering and Variable Speed Limits produced the best benefits. These results illustrate the significant potential of ITS strategies to improve the safety and efficiency of urban freeways.
Show less - Date Issued
- 2007
- Identifier
- CFE0001840, ucf:47363
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001840
- Title
- EVALUATING RAMP METERING AND VARIABLE SPEED LIMITS TO REDUCE CRASH POTENTIAL ON CONGESTED FREEWAYS USING MICRO-SIMULATION.
- Creator
-
Dhindsa, Albinder, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
Recent research at UCF into defining surrogate measures for identifying crash prone conditions on freeways has led to the introduction of several statistical models which can flag such conditions with a good degree of accuracy. Outputs from these models have the potential to be used as real-time safety measures on freeways. They may also act as the basis for the evaluation of several intervention strategies that might help in the mitigation of risk of crashes. Ramp Metering and Variable Speed...
Show moreRecent research at UCF into defining surrogate measures for identifying crash prone conditions on freeways has led to the introduction of several statistical models which can flag such conditions with a good degree of accuracy. Outputs from these models have the potential to be used as real-time safety measures on freeways. They may also act as the basis for the evaluation of several intervention strategies that might help in the mitigation of risk of crashes. Ramp Metering and Variable Speed Limits are two approaches which have the potential of becoming effective implementation strategies for improving the safety conditions on congested freeways. This research evaluates both these strategies in different configurations and attempts to quantify their effect on risk of crash on a 9-mile section of Interstate-4 in the Orlando metropolitan region. The section consists of 17 Loop Detector stations, 11 On-ramps and 10 off-ramps. PARAMICS micro-simulation is used as the tool for modeling the freeway section. The simulated network is calibrated and validated for 5 minute average flows and speeds using loop detector data. Feedback Ramp Metering algorithm, ALINEA, is used for controlling access from up to 7 on-ramps. Variable Speed Limits are implemented based on real-time speed conditions prevailing in the whole 9-mile section. Both these strategies are tested separately as well as collectively to determine the individual effects of all the parameters involved. The results have been used to formulate and recommend the best possible strategy for minimizing the risk of crashes on the corridor. The study concluded that Ramp Metering improves the conditions on the freeway in terms of safety by decreasing variance in speeds and decreasing average occupancy. A safety benefit index was developed for quantifying the reduction in crash risk and it indicated that an optimal implementation strategy might produce benefits of up to 55%. The condition on the freeway section improved with increase in the number of metered ramps. It was also observed that shorter signal cycles for metered ramps were more suitable for metering multiple ramps. Ramp Metering at multiple locations also decreased the segment wide travel-times by 5% and was even able to offset the delays incurred by drivers at the metered on-ramps. Variable Speed Limits (VSL) were individually not as effective as ramp metering but when implemented along with ramp metering, they were found to further improve the safety on the freeway section under consideration. By means of a detailed experimental design it was observed that the best strategy for introducing speed limit changes was to raise the speed limits downstream of the location of interest by 5 mph and not affecting the speed limits upstream. A coordinated strategy - involving simultaneous application of VSL and Ramp Metering - provided safety benefits of up to 56 % for the study section according to the safety benefit index. It also improved the average speeds on the network besides decreasing the overall network travel time by as much as 21%.
Show less - Date Issued
- 2005
- Identifier
- CFE0000913, ucf:46741
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000913
- Title
- EXAMINING ROUTE DIVERSION AND MULTIPLE RAMP METERING STRATEGIES FOR REDUCING REAL-TIME CRASH RISK ON URBAN FREEWAYS.
- Creator
-
Gayah, Vikash, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
Recent research at the University of Central Florida addressing crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical models capable of calculating the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models yield the rear-end and lane-change crash risk along the freeway in real-time by using static information at various locations along the freeway as well as real-time traffic data that is obtained from the roadway....
Show moreRecent research at the University of Central Florida addressing crashes on Interstate-4 in Orlando, Florida has led to the creation of new statistical models capable of calculating the crash risk on the freeway (Abdel-Aty et al., 2004; 2005, Pande and Abdel-Aty, 2006). These models yield the rear-end and lane-change crash risk along the freeway in real-time by using static information at various locations along the freeway as well as real-time traffic data that is obtained from the roadway. Because these models use the real-time traffic data, they are capable of calculating the respective crash risk values as the traffic flow changes along the freeway. The purpose of this study is to examine the potential of two Intelligent Transportation System strategies for reducing the crash risk along the freeway by changing the traffic flow parameters. The two ITS measures that are examined in this research are route diversion and ramp metering. Route diversion serves to change the traffic flow by keeping some vehicles from entering the freeway at one location and diverting them to another location where they may be more efficiently inserted into the freeway traffic stream. Ramp metering alters the traffic flow by delaying vehicles at the freeway on-ramps and only allowing a certain number of vehicles to enter at a time. The two strategies were tested by simulating a 36.25 mile section of the Interstate-4 network in the PARAMICS micro-simulation software. Various implementations of route diversion and ramp metering were then tested to determine not only the effects of each strategy but also how to best apply them to an urban freeway. Route diversion was found to decrease the overall rear-end and lane-change crash risk along the network at free-flow conditions to low levels of congestion. On average, the two crash risk measures were found to be reduced between the location where vehicles were diverted and the location where they were reinserted back into the network. However, a crash migration phenomenon was observed at higher levels of congestion as the crash risk would be greatly increased at the location where vehicles were reinserted back onto the network. Ramp metering in the downtown area was found to be beneficial during heavy congestion. Both coordinated and uncoordinated metering algorithms showed the potential to significantly decrease the crash risk at a network wide level. When the network is loaded with 100 percent of the vehicles the uncoordinated strategy performed the best at reducing the rear-end and lane-change crash risk values. The coordinated strategy was found to perform the best from a safety and operational perspective at moderate levels of congestion. Ramp metering also showed the potential for crash migration so care must be taken when implementing this strategy to ensure that drivers at certain locations are not put at unnecessary risk. When ramp metering is applied to the entire freeway network both the rear-end and lane-change crash risk is decreased further. ALINEA is found to be the best network-wide strategy at the 100 percent loading case while a combination of Zone and ALINEA provides the best safety results at the 90 percent loading case. It should also be noted that both route diversion and ramp metering were found to increase the overall network travel time. However, the best route diversion and ramp metering strategies were selected to ensure that the operational capabilities of the network were not sacrificed in order to increase the safety along the freeway. This was done by setting the maximum allowable travel time increase at 5% for any of the ITS strategies considered.
Show less - Date Issued
- 2006
- Identifier
- CFE0001437, ucf:47054
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001437
- Title
- Microscopic Safety Evaluation and Prediction for Special Expressway Facilities.
- Creator
-
Wang, Ling, Abdel-Aty, Mohamed, Radwan, Essam, Eluru, Naveen, Lee, JaeYoung, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
Expressways are of great importance and serve as the backbone of a roadway system. One of the reasons why expressways increase travel speeds and provide high level of services is that limited access is provided to permit vehicles to enter or exit expressways. Entering and exiting of vehicles are accomplished through interchanges, which consist of several ramps, thus the spacing between ramps is important. A weaving segment might form when an on-ramp is closely followed by an off-ramp. The...
Show moreExpressways are of great importance and serve as the backbone of a roadway system. One of the reasons why expressways increase travel speeds and provide high level of services is that limited access is provided to permit vehicles to enter or exit expressways. Entering and exiting of vehicles are accomplished through interchanges, which consist of several ramps, thus the spacing between ramps is important. A weaving segment might form when an on-ramp is closely followed by an off-ramp. The geometric design of ramps and the traffic behavior of weaving segments are different from other expressway segments. These differences result in distinct safety mechanisms of these two expressway special facilities. Hence, the safety of these two facilities needs to be addressed.The majority of previous traffic safety studies on expressway special facilities are based on highly aggregated traffic data, e.g., Annual Average Daily Traffic (AADT). This highly aggregated traffic data cannot represent traffic conditions at the time of crashes and also cannot be used in the study of weather and temporal impact on crash occurrence. One way to solve this problem is microscopic safety evaluation and prediction through hourly crash prediction and real-time safety analysis. An hourly crash study averages one or several hours' traffic data in a year and also aggregates crash frequencies in the corresponding hour(s). Then it applies predictive models to determine the statistical relationship between crashes and hourly traffic flow characteristics, such as traffic volume. Real-time safety analysis enables us to predict crash risk and distinguish crashes from non-crashes in the next few minutes using the current traffic, weather, and other conditions.There are four types of crash contributing factors: traffic, geometry, weather, and driver. Among these, traffic parameters have been utilized in all previous microscopic safety studies. On the other hand, the other three factors' impact on microscopic safety has not been widely analyzed. The geometric factors' influence on safety are generally excluded by previous researchers using the matched-case-control method, because the majority of previous microscopic safety studies are on mainlines, where the geometric design of a segment does not change much and geometry does not have a significant effect on safety. Not enough studies have adopted weather factors in microscopic safety analysis because of the limited availability of weather data. The impact of drivers on safety has also not been widely considered since driver information is hard to be obtained. This study explores the relationship between crashes and the four contributing factors. Weather data are obtained from airport weather stations and crash reports which record weather and roadway surface conditions for crashes. Meanwhile, land-use and trip generation parameters serve as surrogates for drivers' behavior.Several methods are used to explore and quantify the impact of these factors. Random forests are used in discovering important and significant explanatory variables, which play significant roles in determining traffic safety, by ranking their importance. Meanwhile, in order to prevent high correlation between independent variables, Pearson correlation tests are carried out before model estimations. Only the variables which are not highly correlated are selected. Then, the selected variables are put in logistic regression models and Poisson-lognormal models to respectively estimate crash risk and crash frequency for special expressway facilities. Meanwhile, in case of correlation among observations in the same segment, a multilevel modeling structure has been implemented. Furthermore, a data mining technique(-)Support Vector Machine (SVM)(-)is used to distinguish crash from non-crash observations. Once the crash mechanisms for special expressway facilities are found, we are able to provide valuable information on how to manage roadway facilities to improve the traffic safety of special facilities. This study adopts Active Traffic Management (ATM) strategies, including Ramp Metering (RM) and Variable Speed Limit (VSL), in order to enhance the safety of a congested weaving segment. RM regulates the entering vehicle volume by adjusts metering rate, and VSL is able to provide smoother mainline traffic by changing the mainline speed limits. The ATM strategies are carried out in microscopic simulation VISSIM through the Component Object Model (COM) interface. The results shows that the crash risk and conflict count of the studies weaving segment have been significantly reduced because of ATM.Furthermore, the mechanisms of traffic conflicts, a surrogate safety measurement, are explored for weaving segments using microscopic simulation. The weaving segment conflict prediction model is compared with its crash prediction model. The results show that there are similarity and differences between conflict and crash mechanisms. Finally, potential relevant applications beyond the scope of this research but worth investigation in the future are also discussed in this dissertation.
Show less - Date Issued
- 2016
- Identifier
- CFE0006414, ucf:51480
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006414
- Title
- Implementation Strategies for Real-time Traffic Safety Improvements on Urban Freeways.
- Creator
-
Dilmore, Jeremy, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
This research evaluates Intelligent Transportation System (ITS) implementation strategies to improve the safety of a freeway once a potential of a crash is detected. Among these strategies are Variable Speed Limit (VSL) and ramp metering. VSL are ITS devices that are commonly used to calm traffic in an attempt to relieve congestion and enhance throughput. With proper use, VSL can be more cost effective than adding more lanes. In addition to maximizing the capacity of a roadway, a different...
Show moreThis research evaluates Intelligent Transportation System (ITS) implementation strategies to improve the safety of a freeway once a potential of a crash is detected. Among these strategies are Variable Speed Limit (VSL) and ramp metering. VSL are ITS devices that are commonly used to calm traffic in an attempt to relieve congestion and enhance throughput. With proper use, VSL can be more cost effective than adding more lanes. In addition to maximizing the capacity of a roadway, a different aspect of VSL can be realized by the potential of improving traffic safety. Through the use of multiple microscopic traffic simulations, best practices can be determined, and a final recommendation can be made. Ramp metering is a method to control the amount of traffic flow entering from on-ramps to achieve a better efficiency of the freeway. It can also have a potential benefit in improving the safety of the freeway. This thesis pursues the goal of a best-case implementation of VSL. Two loading scenarios, a fully loaded case (90% of ramp maximums) and an off-peak loading case (60% of ramp maximums), at multiple stations with multiple implementation methods are strategically attempted until a best-case implementation is found. The final recommendation for the off-peak loading is a 15 mph speed reduction for 2 miles upstream and a 15 mph increase in speed for the 2 miles downstream of the detector that shows a high crash potential. The speed change is to be implemented in 5 mph increments every 10 minutes. The recommended case is found to reduce relative crash potential from .065 to -.292, as measured by a high-speed crash prediction algorithm (Abdel-Aty et al. 2005). A possibility of crash migration to downstream and upstream locations was observed, however, the safety and efficiency benefits far outweigh the crash migration potential. No final recommendation is made for the use of VSL in the fully loaded case (low-speed case); however, ramp metering indicated a promising potential for safety improvement.
Show less - Date Issued
- 2005
- Identifier
- CFE0000339, ucf:46287
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000339