View All Items
- Title
- REDISTRIBUTION OF MANGANESE ION IMPLANTED IN SILICON.
- Creator
-
Shunmugavelu, Arun, An, Linan, University of Central Florida
- Abstract / Description
-
Ion implantation and the subsequent redistribution of manganese atoms in Czochralski Silicon (Cz-Si) and Floating Zone Silicon (Fz-Si) due to thermal annealing between 300 C and 1000 C is studied using Secondary Ion Mass Spectroscopy. The samples ion implanted at 340 C showed multiple peak formation above 900 C. This was not observed for the samples ion implanted at room temperature. Cz-Si and Fz-Si showed similar redistribution profiles.
- Date Issued
- 2007
- Identifier
- CFE0001909, ucf:47477
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001909
- Title
- Evaluation of Real World Toll Plazas Using Driving Simulation.
- Creator
-
Carroll, Kali, Abdel-Aty, Mohamed, Lee, JaeYoung, Eluru, Naveen, University of Central Florida
- Abstract / Description
-
Toll plazas are becoming an essential part of the highway system, especially within the state of Florida. Many crashes reported on highways occur at toll plazas. A primary reason for many vehicle collisions happening at these facilities is the fact that each toll plaza agency has different design, signage and marking criteria. This, in turn, causes driver confusion and possible last minute weaving maneuvers. Even though the varying design of toll plazas is a clear highway safety factor,...
Show moreToll plazas are becoming an essential part of the highway system, especially within the state of Florida. Many crashes reported on highways occur at toll plazas. A primary reason for many vehicle collisions happening at these facilities is the fact that each toll plaza agency has different design, signage and marking criteria. This, in turn, causes driver confusion and possible last minute weaving maneuvers. Even though the varying design of toll plazas is a clear highway safety factor, research in the field is very limited but expanding. This study focuses on one toll plaza, in particular the Dean Mainline Toll Plaza, located in Orlando, Florida. The toll plaza is located directly between two roads that are in close proximity of each other. Because of this, the toll plaza is very close to the on- and off- ramps, which can be even more confusing and stressful for a driver entering or leaving the highway. The purpose of this study is to evaluate the safety and efficiency of the Dean Mainline Toll Plaza in order to make recommendations to improve or maintain the current toll plaza design, as well as potentially contribute to a nationally set design standard for toll plazas. Using the NADS miniSimTM Simulator, 72 subjects were recruited, and each subject was asked to drive 3 scenarios that were randomly selected from a pool of 24 scenarios. The following factors were changed in order to study the driver's behavior: signage and their location, pavement markings, distances between the toll plaza and ramps, and traffic conditions. All of these factors were altered and observed on five of the eight possible routes than can be taken through the toll plaza. The subjects were asked to complete questionnaires before and after all of the scenarios, as well as in between each driving scenario. These questionnaires included demographic characteristics, such as age, education, income, E-PASS ownership, etc. The data that were collected by the driving simulator and questionnaires were analyzed by ANOVA and multinomial logistic regression models. A positive relationship was found between non-urgent lane changing and the current real-world sign conditions prior to the toll plaza. Relationships were also found between the subjects' speed in various locations and signage before the toll plaza and segment length after the toll plaza. Along with specified recommendations for future research in toll plaza safety, recommendations for the Dean Mainline Toll Plaza include maintaining the current signs and pavement markings, as they were found to be beneficial in drivers performing safe lane changing maneuvers.
Show less - Date Issued
- 2016
- Identifier
- CFE0006085, ucf:50960
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006085
- Title
- Development of Nitrogen Concentration During Cryomilling of Aluminum Composites.
- Creator
-
Hofmeister, Clara, Sohn, Yongho, Suryanarayana, Challapalli, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The ideal properties of a structural material are light weight with extensive strength and ductility. A composite with high strength and tailorable ductility was developed consisting of nanocrystalline AA5083, boron carbide and coarser grained AA5083. The microstructure was determined through optical microscopy and transmission electron microscopy. A technique was developed to determine the nitrogen concentration of an AA5083 composite from secondary ion mass spectrometry utilizing a nitrogen...
Show moreThe ideal properties of a structural material are light weight with extensive strength and ductility. A composite with high strength and tailorable ductility was developed consisting of nanocrystalline AA5083, boron carbide and coarser grained AA5083. The microstructure was determined through optical microscopy and transmission electron microscopy. A technique was developed to determine the nitrogen concentration of an AA5083 composite from secondary ion mass spectrometry utilizing a nitrogen ion-implanted standard. Aluminum nitride and amorphous nitrogen-rich dispersoids were found in the nanocrystalline aluminum grain boundaries. Nitrogen concentration increased as a function of cryomilling time up to 72hours. A greater nitrogen concentration resulted in an enhanced thermal stability of the nanocrystalline aluminum phase and a resultant increase in hardness. The distribution of the nitrogen-rich dispersoids may be estimated considering their size and the concentration of nitrogen in the composite. Contributions to strength and ductility from the Orowan relation can be more accurately modeled with the quantified nitrogen concentration.
Show less - Date Issued
- 2013
- Identifier
- CFE0004864, ucf:49702
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004864
- Title
- Real-time SIL Emulation Architecture for Cooperative Automated Vehicles.
- Creator
-
Gupta, Nitish, Pourmohammadi Fallah, Yaser, Rahnavard, Nazanin, Vosoughi, Azadeh, University of Central Florida
- Abstract / Description
-
This thesis presents a robust, flexible and real-time architecture for Software-in-the-Loop (SIL) testing of connected vehicle safety applications. Emerging connected and automated vehicles (CAV) use sensing, communication and computing technologies in the design of a host of new safety applications. Testing and verification of these applications is a major concern for the automotive industry. The CAV safety applications work by sharing their state and movement information over wireless...
Show moreThis thesis presents a robust, flexible and real-time architecture for Software-in-the-Loop (SIL) testing of connected vehicle safety applications. Emerging connected and automated vehicles (CAV) use sensing, communication and computing technologies in the design of a host of new safety applications. Testing and verification of these applications is a major concern for the automotive industry. The CAV safety applications work by sharing their state and movement information over wireless communication links. Vehicular communication has fueled the development of various Cooperative Vehicle Safety (CVS) applications. Development of safety applications for CAV requires testing in many different scenarios. However, the recreation of test scenarios for evaluating safety applications is a very challenging task. This is mainly due to the randomness in communication, difficulty in recreating vehicle movements precisely, and safety concerns for certain scenarios. We propose to develop a standalone Remote Vehicle Emulator (RVE) that can reproduce V2V messages of remote vehicles from simulations or from previous tests, while also emulating the over the air behavior of multiple communicating nodes. This is expected to significantly accelerate the development cycle. RVE is a unique and easily configurable emulation cum simulation setup to allow Software in the Loop (SIL) testing of connected vehicle applications in a realistic and safe manner. It will help in tailoring numerous test scenarios, expediting algorithm development and validation as well as increase the probability of finding failure modes. This, in turn, will help improve the quality of safety applications while saving testing time and reducing cost.The RVE architecture consists of two modules, the Mobility Generator, and the Communication emulator. Both of these modules consist of a sequence of events that are handled based on the type of testing to be carried out. The communication emulator simulates the behavior of MAC layer while also considering the channel model to increase the probability of successful transmission. It then produces over the air messages that resemble the output of multiple nodes transmitting, including corrupted messages due to collisions. The algorithm that goes inside the emulator has been optimized so as to minimize the communication latency and make this a realistic and real-time safety testing tool. Finally, we provide a multi-metric experimental evaluation wherein we verified the simulation results with an identically configured ns3 simulator. With the aim to improve the quality of testing of CVS applications, this unique architecture would serve as a fundamental design for the future of CVS application testing.
Show less - Date Issued
- 2018
- Identifier
- CFE0007185, ucf:52280
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007185
- Title
- Spray Deposition Modeling of Carbon Nano-Inks.
- Creator
-
Sparkman, John, Gou, Jihua, Xu, Yunjun, Lin, Kuo-Chi, University of Central Florida
- Abstract / Description
-
Carbon nanopaper (CNP) exhibits qualities that are desirable for a number of applications such as flame retardancy, lightning protection, and flexible printed circuit boards. CNP has become a desired engineering material in many important sectors of industries such as space, automotive, aviation, and military. However the production of consistent thicknesses and dispersion remains a challenge for practical use. Most of the standard methods of production do not allow for continuous...
Show moreCarbon nanopaper (CNP) exhibits qualities that are desirable for a number of applications such as flame retardancy, lightning protection, and flexible printed circuit boards. CNP has become a desired engineering material in many important sectors of industries such as space, automotive, aviation, and military. However the production of consistent thicknesses and dispersion remains a challenge for practical use. Most of the standard methods of production do not allow for continuous applications or digital fabrication of the CNP. In this work, CNP is produced two different ways that allows for continuous production and digital fabrication. The continuous CNP making technique uses vacuum infiltration along with air atomization and a continuous drive belt system to produce a continuous roll of the CNP. This system is able to produce an 11 (&)#181;m (&)#177; 2 (&)#181;m CNP at 6 inches per min with an electrical resistivity of 59 ? per square. The major advantage of this production process is the ability to mass manufacture the CNP. Spray deposition modeling (SDM) is a digital fabrication process that uses a 12 array bubble jet nozzle attached to a digital control x-y plotter combined with a heated substrate which induces evaporation. This process is able to produce paper with variable thicknesses in defined locations. The maximum thickness of the CNP produced is 10 (&)#181;m with a resistivity of 95.7 ? per square. A strong advantage of this CNP production method comes from the ability to digitally print images. The controllable thickness and selective location printing presents an effective alternative to costlier methods and provides a solution to many geometrical CNP issues.
Show less - Date Issued
- 2015
- Identifier
- CFE0006231, ucf:51073
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006231
- Title
- An Agile Roadmap for Live, Virtual and Constructive-Integrating Training Architecture (LVC-ITA): A Case Study Using a Component based Integrated Simulation Engine.
- Creator
-
Park, Tae Woong, Lee, Gene, Rabelo, Luis, Elshennawy, Ahmad, Kincaid, John, University of Central Florida
- Abstract / Description
-
Conducting seamless Live Virtual Constructive (LVC) simulation remains the most challenging issue of Modeling and Simulation (M(&)S). There is a lack of interoperability, limited reuse and loose integration between the Live, Virtual and/or Constructive assets across multiple Standard Simulation Architectures (SSAs). There have been various theoretical research endeavors about solving these problems but their solutions resulted in complex and inflexible integration, long user-usage time and...
Show moreConducting seamless Live Virtual Constructive (LVC) simulation remains the most challenging issue of Modeling and Simulation (M(&)S). There is a lack of interoperability, limited reuse and loose integration between the Live, Virtual and/or Constructive assets across multiple Standard Simulation Architectures (SSAs). There have been various theoretical research endeavors about solving these problems but their solutions resulted in complex and inflexible integration, long user-usage time and high cost for LVC simulation. The goal of this research is to provide an Agile Roadmap for the Live Virtual Constructive-Integrating Training Architecture (LVC-ITA) that will address the above problems and introduce interoperable LVC simulation. Therefore, this research describes how the newest M(&)S technologies can be utilized for LVC simulation interoperability and integration. Then, we will examine the optimal procedure to develop an agile roadmap for the LVC-ITA.In addition, this research illustrated a case study using an Adaptive distributed parallel Simulation environment for Interoperable and reusable Model (AddSIM) that is a component based integrated simulation engine. The agile roadmap of the LVC-ITA that reflects the lessons learned from the case study will contribute to guide M(&)S communities to an efficient path to increase interaction of M(&)S simulation across systems.
Show less - Date Issued
- 2015
- Identifier
- CFE0005682, ucf:52867
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005682
- Title
- Deposition and characterization studies of boron carbon nitride (BCN) thin films prepared by dual target sputtering.
- Creator
-
Prakash, Adithya, Sundaram, Kalpathy, Kapoor, Vikram, Yuan, Jiann-Shiun, Jin, Yier, Chow, Louis, University of Central Florida
- Abstract / Description
-
As complementary metal-oxide semiconductor (CMOS) devices shrink to smaller size, the problems related to circuit performance such as critical path signal delay are becoming a pressing issue. These delays are a result of resistance and capacitance product (RC time constant) of the interconnect circuit. A novel material with reduced dielectric constants may compromise both the thermal and mechanical properties that can lead to die cracking during package and other reliability issues. Boron...
Show moreAs complementary metal-oxide semiconductor (CMOS) devices shrink to smaller size, the problems related to circuit performance such as critical path signal delay are becoming a pressing issue. These delays are a result of resistance and capacitance product (RC time constant) of the interconnect circuit. A novel material with reduced dielectric constants may compromise both the thermal and mechanical properties that can lead to die cracking during package and other reliability issues. Boron carbon nitride (BCN) compounds have been expected to combine the excellent properties of boron carbide (B4C), boron nitride (BN) and carbon nitride (C3N4), with their properties adjustable, depending on composition and structure. BCN thin film is a good candidate for being hard, dense, pore-free, low-k dielectric with values in the range of 1.9 to 2.1. Excellent mechanical properties such as adhesion, high hardness and good wear resistance have been reported in the case of sputtered BCN thin films. Problems posed by high hardness materials such as diamonds in high cutting applications and the comparatively lower hardness of c-BN gave rise to the idea of a mixed phase that can overcome these problems with a minimum compromise in its properties. A hybrid between semi-metallic graphite and insulating h-BN may show adjusted semiconductor properties. BCN exhibits the potential to control optical bandgap (band gap engineering) by atomic composition, hence making it a good candidate for electronic and photonic devices. Due to tremendous bandgap engineering capability and refractive index variability in BCN thin film, it is feasible to develop filters and mirrors for use in ultra violet (UV) wavelength region. It is of prime importance to understand process integration challenges like deposition rates, curing, and etching, cleaning and polishing during characterization of low-k films. The sputtering technique provides unique advantages over other techniques such as freedom to choose the substrate material and a uniform deposition over relatively large area. BCN films are prepared by dual target reactive magnetron sputtering from a B4C and BN targets using DC and RF powers respectively. In this work, an investigation of mechanical, optical, chemical, surface and device characterizations is undertaken. These holistic and thorough studies, will provide the insight into the capability of BCN being a hard, chemically inert, low-k, wideband gap material, as a potential leader in semiconductor and optics industry.
Show less - Date Issued
- 2016
- Identifier
- CFE0006378, ucf:51496
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006378