Current Search: CARBON NANOTUBE (x)
View All Items
Pages
- Title
- VIBRATION ANALYSIS OF CARBON NANOTUBE USING CONTINUUM MODEL AND FINITE ELEMENT MODEL.
- Creator
-
Subramaniam , Hari, Wang, Quan, University of Central Florida
- Abstract / Description
-
The main objective of the thesis is to propose the methods of determining vibration behavior of carbon nanotubes (CNTs) using continuum models and finite element models. Secondary objective is to find the effect of van der Waals force on vibration of multiwalled carbon nanotubes . The study of vibration behavior of CNTs is important because of their potential engineering applications such as nano-mechanical resonators and tips of scanning probe instruments where they are subjected to...
Show moreThe main objective of the thesis is to propose the methods of determining vibration behavior of carbon nanotubes (CNTs) using continuum models and finite element models. Secondary objective is to find the effect of van der Waals force on vibration of multiwalled carbon nanotubes . The study of vibration behavior of CNTs is important because of their potential engineering applications such as nano-mechanical resonators and tips of scanning probe instruments where they are subjected to mechanical vibrations. Continuum modeling is based on an elastic beam model. The interlayer van der Waals interactions are represented by Lennard-Jones potential. In finite element modeling, single walled nanotubes (SWNTs) are modeled as finite beam elements and multi-walled nanotubes (MWNTs) as finite solid elements. The interlayer van der Waals interactions are simulated by distributed springs. The proposed finite element approach and continuum approach for vibration analysis of CNTs are verified by comparing the results with experimental and analytical results available in the literature. The results from both continuum and finite element modeling show that the effect of van der Waals force on vibration of MWNTs are high for smaller aspect ratios irrespective of boundary conditions and number of layers; fixed nanotube than cantilever nanotube for the same dimensions ; five-walled nanotube than a double walled nanotube for the same aspect ratio.
Show less - Date Issued
- 2005
- Identifier
- CFE0000735, ucf:46555
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000735
- Title
- Electronic transport properties of carbon nanotubes: the impact of atomic charged impurities.
- Creator
-
Tsuchikawa, Ryuichi, Ishigami, Masa, Mucciolo, Eduardo, Peale, Robert, Masunov, Artem, University of Central Florida
- Abstract / Description
-
Even changing one atom in nanoscale materials is expected to alter their properties due to their small physical sizes. Such sensitivity can be utilized to modify materials' properties from bottom up and is essential for the utility of nanoscale materials. As such, the impact of extrinsic atomic adsorbates was measured on pristine graphene and a network of carbon nanotubes using atomic hydrogen, cesium atoms, and dye molecules. In order to further quantify such an atomic influence, the...
Show moreEven changing one atom in nanoscale materials is expected to alter their properties due to their small physical sizes. Such sensitivity can be utilized to modify materials' properties from bottom up and is essential for the utility of nanoscale materials. As such, the impact of extrinsic atomic adsorbates was measured on pristine graphene and a network of carbon nanotubes using atomic hydrogen, cesium atoms, and dye molecules. In order to further quantify such an atomic influence, the resistance induced by a single potassium atom on metallic and semiconducting carbon nanotubes was measured for the first time. Carbon nanotubes are sensitive to adsorbates due to their high surface-to-volume ratio. The resistance arising from the presence of extrinsic impurity atoms depends on the types of nanotubes. Metallic carbon nanotubes are resilient to a long-ranged, Coulomb-like potential, whereas semiconducting carbon nanotubes are susceptible to these impurities. The difference in the scattering strength originates from the chirality of carbon nanotubes, which defines their unique electronic properties. This difference had not directly measured experimentally because of the issue of contact resistance, the difficulty of chirality identification, and the uncertainty in the number of impurity atoms introduced on carbon nanotubes.We synthesized atomically clean, long ((>)100 ?m) carbon nanotubes, and their chirality was identified by Rayleigh scattering spectroscopy. We introduced potassium atoms on the nanotubes to impose a long-range, Coulomb potential and measured the change in resistivity, excluding the contact resistance, by plotting the resistance as a function of the carbon nanotube length. The flux of potassium atoms coming onto the nanotubes was monitored by quartz crystal microbalance, and the scattering strength of a single potassium atom was deduced from the change in resistivity and the density of potassium atoms on the nanotubes. We found that the scattering strength of potassium atoms on semiconducting nanotubes depends on the charge carrier type (holes or electrons). Metallic nanotubes were found to be less affected by the presence of potassium atoms than semiconducting nanotubes, but the scattering strength showed a large dependence on Fermi energy. These experimental results were compared to theoretical simulations, and we found a good agreement with the experiments. Our findings provide crucial information for the application of carbon nanotubes for electronic devices, such as transistors and sensors.
Show less - Date Issued
- 2015
- Identifier
- CFE0005729, ucf:50078
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005729
- Title
- Investigation of Breakdown Power During Electrical Breakdown of Aligned Array of Carbon Nanotubes.
- Creator
-
Bhanu, Udai, Khondaker, Saiful, Leuenberger, Michael, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Massively parallel arrays of single walled carbon nanotubes (SWNT) have attracted significant research interests because of their ability to (i) average out inhomogeneities of individual SWNTs, (ii) provide larger on currents, and (iii) reduce noise to provide higher cutoff frequency for radio frequency applications. However, the array contains both metallic and semiconducting SWNTs and the presence of metallic nanotube in an aligned array negatively affects the device properties. Therefore,...
Show moreMassively parallel arrays of single walled carbon nanotubes (SWNT) have attracted significant research interests because of their ability to (i) average out inhomogeneities of individual SWNTs, (ii) provide larger on currents, and (iii) reduce noise to provide higher cutoff frequency for radio frequency applications. However, the array contains both metallic and semiconducting SWNTs and the presence of metallic nanotube in an aligned array negatively affects the device properties. Therefore, it is essential to selectively remove metallic nanotubes to obtain better transistor properties. It was recently found that although such a selective removal can be effective for a low density array, it does not work in a high density array and lead to a correlated breakdown of the entire array giving rise to a nanofissure pattern.In order to obtain a deeper understanding of such a correlated SWNT breakdown, we studied the breakdown power in the successive electrical breakdown of both low ( (<) 2 /um) and high density ((>)10 /um) SWNT arrays. We show that the breakdown voltage in successive electrical breakdown increases for low density array while it decreases for high density arrays. The estimated power required for the breakdown remains constant for low density arrays while it decreases for high density arrays in successive electrical breakdowns. We also show that, while a simple model of parallel resistor network can explain the breakdown of low density array, it cannot explain the behavior for the high density array implying that the correlation between the closely spaced parallel nanotubes plays a big role in the successive breakdowns of the high density SWNTs.
Show less - Date Issued
- 2012
- Identifier
- CFE0004518, ucf:49292
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004518
- Title
- MECHANICAL PROPERTIES OF CARBON NANOTUBE / METAL COMPOSITES.
- Creator
-
Sun, Ying, Chen, Quanfang, University of Central Florida
- Abstract / Description
-
Carbon nanotubes (CNTs) have captured a great deal of attention worldwide since their discovery in 1991. CNTs are considered to be the stiffest and strongest material due to their perfect atomic arrangement and intrinsic strong in-plane sp2ÃÂ--sp2 covalent bonds between carbon atoms. In addition to mechanical properties, CNTs have also shown exceptional chemical, electrical and thermal properties. All these aspects make CNTs promising candidates in the development of novel...
Show moreCarbon nanotubes (CNTs) have captured a great deal of attention worldwide since their discovery in 1991. CNTs are considered to be the stiffest and strongest material due to their perfect atomic arrangement and intrinsic strong in-plane sp2ÃÂ--sp2 covalent bonds between carbon atoms. In addition to mechanical properties, CNTs have also shown exceptional chemical, electrical and thermal properties. All these aspects make CNTs promising candidates in the development of novel multi-functional nanocomposites. Utilizing CNTs as fillers to develop advanced nanocomposites still remains a challenge, due to the lack of fundamental understanding of both material processing at the nanometer scale and the resultant material properties. In this work, a new model was developed to investigate the amount of control specific parameters have on the mechanical properties of CNT composites. The new theory can be used to guide the development of advanced composites using carbon nanotubes, as well as other nano-fibers, with any matrices (ceramic, metal, or polymer). Our study has shown that the varying effect based on changes in CNT dimensions and concentration fit the model predictions very well. Metallic CNT composites using both single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT), have been developed through a novel electrochemical co-deposition process. Copper and nickel matrix composites were developed by using pulse-reverse electrochemical co-deposition. Uniaxial tensile test results showed that a more than 300% increase in strength compared to that of the pure metal had been achieved. For example, the ultimate tensile strength of Ni/CNTs composites reached as high as about 2GPa. These are best experimental results ever reported within this field. The mechanical results are mainly attributed to the good interfacial bonding between the CNTs and the metal matrices and good dispersion of carbon nanotubes within the matrices. Experimental results have also shown that the strength is inversely dependent on the diameter of carbon nanotubes. In addition to the mechanical strength, carbon nanotube reinforced metallic composites are excellent multifunctional materials in terms of electrical and thermal conduction. The electrical resistivity of carbon nanotube/copper composites produces electrical resistivity of about 1.0~1.2 x10-6ohm-cm, which is about 40% less than the pure copper. The reduced electrical resistivity is also attributed to the good interfacial bonding between carbon nanotubes and metal matrices, realized by the electrochemical co-deposition.
Show less - Date Issued
- 2010
- Identifier
- CFE0003144, ucf:48652
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003144
- Title
- Carbon nanotube (CNT) metallic composite with focus on processing and the resultant properties.
- Creator
-
Billah, Md Muktadir, Chen, Quanfang, Bai, Yuanli, An, Linan, Orlovskaya, Nina, University of Central Florida
- Abstract / Description
-
Metal-carbon nanotubes (CNTs) composites are the promising advanced materials that are being developed to take the advantage of the exceptional properties of CNTs. Because of the intrinsically strong in-plane atomic SP2 bonding CNTs offer high young's modulus (1.0(-)1.8 TPa), high tensile strength (30(-)200 GPa) and high elongation at break (10(-)30%). The thermal conductivity of individual single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) are about 6000 W/m-K and...
Show moreMetal-carbon nanotubes (CNTs) composites are the promising advanced materials that are being developed to take the advantage of the exceptional properties of CNTs. Because of the intrinsically strong in-plane atomic SP2 bonding CNTs offer high young's modulus (1.0(-)1.8 TPa), high tensile strength (30(-)200 GPa) and high elongation at break (10(-)30%). The thermal conductivity of individual single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) are about 6000 W/m-K and 3000 W/m-K, respectively. Therefore it is expected that by incorporation of CNTs in metal matrices multi-functional composites can be used ideally as thermal interface materials, light-weight high-strength structural materials, electric components, optical devices, electromagnetic absorption materials etc. However, so far results are far from satisfied for CNT composites, mainly due to the fact that there are two main key issues remained without good solutions for CNT composites: the poor uniformity in CNT dispersion and the weak interfacial bonding between CNTs and the matrices. In this study, MWCNTs were functionalized and coated with metals like Cu and Ni by electroless deposition methods prior to their application. Metal coatings result in strong interfacial bonding at CNT-metal interfaces and uniform dispersion. During metal coating processes CNTs are physically separated in electrolyte and after coating they get physically retain the separation by the coated metal layer that they are not allowed to aggregate to form bundles. Moreover, after metal coating, the resultant density of Ni-coated MWCNTs is close to that of molten metal matrix. This prevent separation of CNTs due to buoyancy effects and results in uniform dispersion. Metal coating on CNTs surfaces also allows to form strong interfacial bonding with the metal matrices.SnBi alloy has been identified as novel lead-free thermal interface material (TIM) for electronics packaging. However the thermal conductivity and the mechanical strength of pure SnBi alloy are not sufficient to withstand harsh environment imposed by powder electronics. Therefor how to increase the thermal conductivity and the mechanical strength of SnBi solders becomes important. In this study, MWCNTs have been added into SnBi alloy to form SnBi/CNT composite solders by different material processing methods. First, in sandwich method Cu-coated CNTs were added to the 70Sn-30Bi alloy and mixed mechanically. UTS was increased by 47.6% for 3 wt. % Cu/CNTs addition. Second. Ni-coated CNTs were added by sonication assisted melting method in fabricating 70Sn-30Bi solder. For 3 wt. % Ni-coated MWCNTs, equivalent to 0.6 wt. % pure MWCNTs, UTS and YS were increased by 88.8 % and 112.3% respectively. In addition the thermal conductivity was also increased by more than 70%. Ni-coated CNTs were also added to pure Al by powder metallurgy method. For 7 wt. % Ni/CNTs having diameter 30-50 nm, UTS and YS were increased by 92.7% and 101.6% respectively. For CNTs having diameter 8-15 nm, UTS and YS were increased by 108.9% and 128.2% respectively for 7 wt. % addition. All these results are first time obtained that are much greater than published data on CNT/metal composites. Results discussion and mechanism in reinforcement were also presented.
Show less - Date Issued
- 2017
- Identifier
- CFE0006567, ucf:51320
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006567
- Title
- First Principle Studies of Cu-Carbon Nanotube Hybrid Structures with Emphasis on the Electronic Structures and the Transport Properties.
- Creator
-
Yang, Chengyu, Chen, Quanfang, Leuenberger, Michael, Coffey, Kevin, Ishigami, Marsahir, Fang, Jiyu, University of Central Florida
- Abstract / Description
-
Carbon nanotubes have been regarded as ideal building blocks for nanoelectronics and multifunctional nanocomposites due to their exceptional strength, stiffness, flexibility, as well as their excellent electrical properties. However, carbon nanotube itself has limitations to fulfill the practical application needs: 1) an individual carbon nanotube has a low density of states at the Fermi level, and thus its conductivity is only comparable to moderate metals but lower than that of copper. 2)...
Show moreCarbon nanotubes have been regarded as ideal building blocks for nanoelectronics and multifunctional nanocomposites due to their exceptional strength, stiffness, flexibility, as well as their excellent electrical properties. However, carbon nanotube itself has limitations to fulfill the practical application needs: 1) an individual carbon nanotube has a low density of states at the Fermi level, and thus its conductivity is only comparable to moderate metals but lower than that of copper. 2) Metallic and semiconducting nanotubes are inherently mixed together from the synthesis, and the selection/separation is very difficult with very low efficiency. 3) Carbon nanotubes alone cannot be used in practical application and a bonding material is normally needed as the join material for actual devices. In this work, we fundamentally explored the possibility that metals (Cu, Al) could tailor carbon nanotube's electronic structure and even transit it from semiconducting to metallic, thus skipping the selection between the metallic and the semiconducting CNTs. We also found out a novel way to enhance a semiconducting CNT system's conductance even better than that of a metallic CNT system. All these researches are done under density functional theory (DFT) frame in conjunction with non-equilibrium Green functions (NEGF).At first we studied the adsorbed copper's influence on the electronic properties of CNT (10, 0) and CNT (5, 5). Results indicate that both the Density of States (DOS) and the transmission coefficients of CNT (5,5) /Cu have been increased. For CNT (10,0)/Cu, the band gap has been shrank, which means the improved conducting properties by the incorporation of copper . As a further case, semiconductor SWCNT (10, 0) with more adsorbed copper chains outside has been studied. 1, 4, 5 and 6 Cu chains have been added onto the carbon nanotube (10,0), and the adsorption of 6 Cu chains finally lead to the transform of the system from semiconducting to metallic. Considering the confining effect, the case that Cu filled into CNT (10, 0) is also studied. It is found that the filled copper chains could modify the system to be metallic more efficiently than the adsorbed Cu chain. Similarly, Al adsorbed on CNT (10, 0) is also studied, and it is found that Al has a better efficiency than copper in tuning the semiconducting CNT to metallic. The existing chemical bonds between the CNT and Al atoms may account for this higher efficiency. In addition, the resultant conductivity of the Al/CNT system is better than that of Cu/CNT system. The Cu/CNT (5,5)+Cu/Cu junction, as another realistic device setup, has been studied in terms of the conductance. The results show that the incorporation of Cu would enhance the conductance of the Cu/CNT/Cu system due to the interaction between Cu and the CNT.
Show less - Date Issued
- 2013
- Identifier
- CFE0005280, ucf:50561
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005280
- Title
- PROCESSING AND CHARACTERIZATION OF MULTIFUNCTIONAL THERMOPLASTIC NANOCOMPOSITE FILMS.
- Creator
-
Wang, Xin, Gou, Jihua, Challapalli, Suryanarayana, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
Nanoparticles reinforced polymer composite films have been widely studied for their enhanced mechanical, electrical and thermal properties compared with host polymer matrix. However, most research was conducted on incorporation of nanoparticles in polymer films to improve single property and there is a lack of research on the multifunctional polymer nanocomposite films. In this work, a scalable and continuous spray deposition process was developed for the production of nanoparticles...
Show moreNanoparticles reinforced polymer composite films have been widely studied for their enhanced mechanical, electrical and thermal properties compared with host polymer matrix. However, most research was conducted on incorporation of nanoparticles in polymer films to improve single property and there is a lack of research on the multifunctional polymer nanocomposite films. In this work, a scalable and continuous spray deposition process was developed for the production of nanoparticles reinforced multifunctional thermoplastic nanocomposite films. This process is capable of making a thin sheet of thermoplastic nanocomposites with high nanoparticle loadings. The smallest thickness can be 40um.The objective of this study is to design and optimize the thermoplastic nanocomposite films by utilizing nanoclay and helical carbon nanotube for multifunctional application: a) high electrical conductivity and thermal stability. Helical carbon nanotube paper based thermoplastic polyurethane nanocomposite films have been studied. The electrical conductivity and thermal stability of nanocomposite films increase a lot due to the incorporation of helical carbon nanotube paper with high electrical and thermal conductivity. The peculiar helical configuration of carbon nanotubes could greatly improve the interfacial bonding between carbon nanotubes and polymer matrix. b)High wear resistance and thermal stability. A nanoclay reinforced thermoplastic polyurethane nanocomposite coating was applied on the surface of leather. Due to the high hardness and thermal stability of nanoclay, the leather coated with nanocomposite film showed an improvement of wear resistance and thermal stability.
Show less - Date Issued
- 2014
- Identifier
- CFE0005734, ucf:50105
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005734
- Title
- Electronic Structure of Metal (Al, Cu) Doped Carbon Nanotubes and the Resultant Conduction of the Hybrid Materials.
- Creator
-
Jiang, Jingyin, Chen, Quanfang, Zhai, Lei, Fang, Jiyu, Bai, Yuanli, Stolbov, Sergey, University of Central Florida
- Abstract / Description
-
Due to the exceptional strength, stiffness and excellent electrical and thermal properties, carbon nanotubes (CNTs) have been regarded as promising candidates for advanced nanoelectronics and multifunctional nanocomposites. In this dissertation, the interaction of CNTs with metals have been investigated and the resultant electrical conduction have been analyzed, aiming to develop innovative avenues to best utilize CNTs' potential. In order to do so, quantum mechanics calculations have been...
Show moreDue to the exceptional strength, stiffness and excellent electrical and thermal properties, carbon nanotubes (CNTs) have been regarded as promising candidates for advanced nanoelectronics and multifunctional nanocomposites. In this dissertation, the interaction of CNTs with metals have been investigated and the resultant electrical conduction have been analyzed, aiming to develop innovative avenues to best utilize CNTs' potential. In order to do so, quantum mechanics calculations have been carried out to study that how to obtain greater electrical conduction by doping metals (Cu, Al) which tailor the electronic structure of three different types of metal-CNT interactions, : 1) encapsulation of atoms inside the CNTs, 2) adsorption of atoms onto CNT surface, and 3) substitutional doping. Models of different doping methods were built and optimized with Density Functional Theory (DFT). And in conjunction with non-equilibrium Green's function, the electronic structure and the conducting properties were then calculated.Through this study, both metallic and semiconducting CNTs have been used. Metallic CNT (5, 5) encapsulated with copper chains have been first investigated with an emphasis on the electronic structure and the resultant conductance. The Density of States (DOS) have showed that the encapsulation of Cu effectively introduced more states around the fermi level. And due to the interaction between copper and CNTs, the conductance of the metallic CNTs-Cu system can be significantly increased.In addition to copper, aluminum has been also introduced for the study. The electronic structure and transport properties of hybrid nanowires consisting of aluminum chains adsorbed on a single-wall semiconducting CNT (10, 0) have been calculated. The band structure and DOS of the hybrid nanowires have showed that the adsorption of Al can effectively reduce the band gap. And with more than 4 Al chains adsorbed, the CNT has transformed from semiconducting to conducting. The transmission eigenstates further indicated that both Al chains and the modified nanotube were responsible for the increased conduction in the hybrid nanowires. The resultant conductance of CNT (10, 0)/Al hybrid nanowire is about 40% greater than that of pure Cu nanowire with the same diameter. In order to utilize the extraordinary conductance in CNT(10,0)/Al hybrid nanowire, it is also important to investigate the end-contact between the hybrid nanowire with Al electrodes. During this work the transmission spectrum at different bias voltage were calculated to study the I-V characteristics and the electrical contact resistances at the interfaces. The results have suggested that the electrical contact resistances between Al electrodes and the hybrid nanowire is significantly lower than that of Al-pure CNT contacts, although the actual contact resistance is directional dependent that the contact resistance is reduced to 20% of that Al-pure CNT along the longitudinal direction.The possibility of substitutional doping of Cu and Al in both metallic and semiconducting CNTs were also investigated. The formation energies have showed that Al doping was more energy favorable than Cu doping in both cases. And by doping of Al or Cu, a metallic tube experienced a higher conductance and a semiconducting tube has transited to conducting.In summary, different doping methods could modify the conducting property of nanotubes. Encapsulation of Cu in metallic CNT results in a significant conductance increment. Adsorption of Al transforms semiconducting CNT to conducting and reduces the contact resistance between the nanowire and Al electrode. Substitutional doping of Cu or Al transits semiconducting nanotube to conducting and enhance the conductance of metallic nanotube.
Show less - Date Issued
- 2017
- Identifier
- CFE0006607, ucf:51274
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006607
- Title
- PROCESSING AND STUDY OF CARBON NANOTUBE / POLYMER NANOCOMPOSITES AND POLYMER ELECTROLYTE MATERIALS.
- Creator
-
Harish, Muthuraman, Huo, Qun, University of Central Florida
- Abstract / Description
-
The first part of the study deals with the preparation of carbon nanotube/polymer nanocomposite materials. The dispersion of multi-walled carbon nanotubes (MWNTs) using trifluoroacetic acid (TFA) as a co-solvent and its subsequent use in polymer nanocomposite fabrication is reported. The use of carbon nanotube/ polymer nanocomposite system for the fabrication of organic solar cells is also studied. TFA is a strong but volatile acid which is miscible with many commonly used organic solvents....
Show moreThe first part of the study deals with the preparation of carbon nanotube/polymer nanocomposite materials. The dispersion of multi-walled carbon nanotubes (MWNTs) using trifluoroacetic acid (TFA) as a co-solvent and its subsequent use in polymer nanocomposite fabrication is reported. The use of carbon nanotube/ polymer nanocomposite system for the fabrication of organic solar cells is also studied. TFA is a strong but volatile acid which is miscible with many commonly used organic solvents. Our study demonstrates that MWNTs can be effectively purified and readily dispersed in a range of organic solvents including dimethyl formamide (DMF), tetrahydrofuran (THF), and dichloromethane when mixed with 10 vol% trifluoroacetic acid (TFA). X-ray photoelectron spectroscopic analysis revealed that the chemical structure of the TFA-treated MWNTs remained intact without oxidation. The dispersed carbon nanotubes in TFA/THF solution were mixed with poly(methyl methacrylate) (PMMA) to fabricate polymer nanocomposites. A good dispersion of nanotubes in solution and in polymer matrices was observed and confirmed by SEM and optical microscopy study. Low percolation thresholds of electrical conductivity were observed from the fabricated MWNT/PMMA composite films. A carbon nanotube/ polymer nanocomposites system was also used for the fabrication of organic solar cells. A blend of single-wall carbon nanotubes (SWNTs) and poly3-hexylthiophene (P3HT) was used as the active layer in the device. The device characteristics showed that the fabrication of the solar cells was successful without any shorts in the circuit. The second part of the study deals with the preparation and characterization of electrode and electrolyte materials for lithium ion batteries. A system of lithium trifluoroacetate/ PMMA was used for its study as the electrolyte in lithium battery. A variety of different processing conditions were used to prepare the polymer electrolyte system. The conductivity of the electrolyte plays a critical role in the high power output of a battery. A high power output requires fast transport of lithium ions for which the conductivity of the electrolyte must be at least 3 x 10^-4 S/cm. Electrochemical Impedance Spectroscopy (EIS) was used to determine the conductivity of the polymer electrolyte films. Among the different processing conditions used to prepare the polymer electrolyte material, wet films of PMMA/salt system prepared by using 10vol% of TFA in THF showed the best results. At about 70wt% loading of the salt in the polymer, the conductivity obtained was about 1.1 x 10^-2 S/cm. Recently, the use of vanadium oxide material as intercalation host for lithium has gained widespread attention. Sol-gel derived vanadium oxide films were prepared and its use as a cathode material for lithium ion battery was studied. The application of carbon nanotubes in lithium ion battery was explored. A carbon nanotube /block copolymer (P3HT-b-PS) composite was prepared and its potential as an anode material was evaluated.
Show less - Date Issued
- 2007
- Identifier
- CFE0001941, ucf:47436
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001941
- Title
- INDIVIDUAL CARBON NANOTUBE PROBES AND FIELD EMITTERS FABRICATION AND THEIR PROPERTIES.
- Creator
-
Chai, Guangyu, Chow, Lee, University of Central Florida
- Abstract / Description
-
Since the discovery of carbon nanotubes (CNT) in 1999, they have attracted much attention due to their unique mechanical and electrical properties and potential applications. Yet their nanosize makes the study of individual CNTs easier said than done. In our laboratory, carbon fibers with nanotube cores have been synthesized with conventional chemical vapor deposition (CVD) method. The single multiwall carbon nanotube (MWNT) sticks out as a tip of the carbon fiber. In order to pick up the...
Show moreSince the discovery of carbon nanotubes (CNT) in 1999, they have attracted much attention due to their unique mechanical and electrical properties and potential applications. Yet their nanosize makes the study of individual CNTs easier said than done. In our laboratory, carbon fibers with nanotube cores have been synthesized with conventional chemical vapor deposition (CVD) method. The single multiwall carbon nanotube (MWNT) sticks out as a tip of the carbon fiber. In order to pick up the individual CNT tips, focused ion beam (FIB) technique is applied to cut and adhere the samples. The carbon fiber with nanotube tip was first adhered on a micro-manipulator with the FIB welding function. Afterwards, by applying the FIB milling function, the fiber was cut from the base. This enables us to handle the individual CNT tips conveniently. By the same method, we can attach the nanotube tip on any geometry of solid samples such as conventional atomic force microscopy (AFM) silicon tips. The procedures developed for the FIB assisted individual CNT tip fabrication will be described in detail. Because of their excellent electrical and stable chemical properties, individual CNTs are potential candidates as electron guns for electron based microscopes to produce highly coherent electron beams. Due to the flexibility of the FIB fabrication, the individual CNT tips can be easily fabricated on a sharpened clean tungsten wire for field emission (FE) experimentation. Another promising application for individual CNT tips is as AFM probes. The high aspect ratio and mechanical resilience make individual CNTs ideal for scanning probe microscopy (SPM) tips. Atomic force microscopy with nanotube tips allows us to image relatively deep features of the sample surface at near nanometer resolution. Characterization of AFM with individual CNT tips and field emission properties of single CNT emitters will be studied and presented.
Show less - Date Issued
- 2004
- Identifier
- CFE0000248, ucf:46233
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000248
- Title
- HIGH YIELD ASSEMBLY AND ELECTRON TRANSPORT INVESTIGATION OF SEMICONDUCTING-RICH LOCAL-GATED CARBON NANOTUBE FIELD EFFECT TRANSISTORS.
- Creator
-
Kormondy, Kristy, Khondaker, Saiful, University of Central Florida
- Abstract / Description
-
Single-walled carbon nanotubes (SWNTs) are ideal for use in nanoelectronic devices because of their high current density, mobility and subthreshold swing. However, assembly methods must be developed to reproducibly align all-semiconducting SWNTs at specific locations with individually addressable gates for future integrated circuits. We show high yield assembly of local-gated semiconducting SWNTs assembled via AC-dielectrophoresis (DEP). Using individual local gates and scaling the gate oxide...
Show moreSingle-walled carbon nanotubes (SWNTs) are ideal for use in nanoelectronic devices because of their high current density, mobility and subthreshold swing. However, assembly methods must be developed to reproducibly align all-semiconducting SWNTs at specific locations with individually addressable gates for future integrated circuits. We show high yield assembly of local-gated semiconducting SWNTs assembled via AC-dielectrophoresis (DEP). Using individual local gates and scaling the gate oxide shows faster switching behavior and lower power consumption. The devices were assembled by DEP between prefabricated Pd source and drain electrodes with a thin Al/Al2O3 gate in the middle, and the electrical characteristics were measured before anneal and after anneal. Detailed electron transport investigations on the devices show that 99% display good FET behavior, with an average threshold voltage of 1V, subthreshold swing as low as 140 mV/dec, and on/off current ratio as high as 8x105. Assembly yield can also be increased to 85% by considering devices where 2-5 SWNT bridge the gap between source and drain electrode. To examine the characteristics of devices bridged by more than one SWNT, similar electron transport measurements were taken for 35 devices with electrodes bridged by 2-3 SWNT and 13 devices connected by 4-5 SWNT. This high yield directed assembly of local-gated SWNT-FETs via DEP may facilitate large scale fabrication of CMOS compatible nanoelectronic devices.
Show less - Date Issued
- 2011
- Identifier
- CFH0003841, ucf:44705
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0003841
- Title
- STRENGTHENING POTENTIAL OF SINGLE-WALLED CARBON NANOTUBES IN PHENOLIC RESIN COMPOSITES.
- Creator
-
Kerr, Brittany, Sohn, Yongho, University of Central Florida
- Abstract / Description
-
Strengthening potential of single-walled carbon nanotubes (SWCNTs) in a phenolic resin composite was evaluated by characterization of purified and phenyl sulfonated SWCNTs, investigation of the load transfer capability of the purified SWCNTs, and characterization of the composites. Purified and phenyl sulfonated SWCNTs, as well as their composites, were examined by Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy equipped with energy dispersive spectroscopy,...
Show moreStrengthening potential of single-walled carbon nanotubes (SWCNTs) in a phenolic resin composite was evaluated by characterization of purified and phenyl sulfonated SWCNTs, investigation of the load transfer capability of the purified SWCNTs, and characterization of the composites. Purified and phenyl sulfonated SWCNTs, as well as their composites, were examined by Raman spectroscopy, thermogravimetric analysis, scanning electron microscopy equipped with energy dispersive spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy and ultra violet-visible spectrometry. Fabrication of the SWCNT/phenolic resin composite was performed by first dispersing the SWCNTs in ethylene glycol and then homogenizing the mixture with phenolic resin. The ethylene glycol was then evaporated from the mixture and the SWCNT/phenolic resin composite was cured at 200ðC for 1 hour. The dispersion of SWCNTs in the phenolic resin was reduced with higher SWCNT concentrations. Load was transferred from the phenolic resin to the purified SWCNTs. This demonstrated the potential to strengthen phenolic resin composite with SWCNT reinforcement. The load transfer efficiency in total tension (0.8%) decreased with an increase in SWCNT concentration, while in total compression (-0.8%), the load transfer efficiency remained constant. At very low strain (ñ 0.2%), the load transfer efficiency remained constant regardless of SWCNT concentration in both tension and compression. Characterization of the phenyl sulfonated SWCNTs indicated that calcium was introduced as a contaminant that interfered with functionalization of the SWCNTs. The use of contaminated phenyl sulfonated SWCNTs resulted in macroscopic inhomogeneity within the composite.
Show less - Date Issued
- 2010
- Identifier
- CFE0003070, ucf:48317
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003070
- Title
- ARC-DISCHARGE IN SOLUTION: A NOVEL SYNTHESIS METHOD FOR CARBON NANOTUBES AND IN SITU DECORATION OF CARBON NANOTUBES WITH NANOPARTICLES.
- Creator
-
Bera, Debasis, Seal, Sudipta, University of Central Florida
- Abstract / Description
-
Nanotechnology has reached the status of the 21st century's leading science and technology based on fundamental and applied research during the last two decades. An important feature of nanotechnology is to bridge the crucial dimensional gap between the atomic and molecular fundamental sciences and microstructural scale of engineering. Accordingly, it is very important to have an in-depth understanding of the synthesis of nanomaterials for the use of state-of-the-art high technological...
Show moreNanotechnology has reached the status of the 21st century's leading science and technology based on fundamental and applied research during the last two decades. An important feature of nanotechnology is to bridge the crucial dimensional gap between the atomic and molecular fundamental sciences and microstructural scale of engineering. Accordingly, it is very important to have an in-depth understanding of the synthesis of nanomaterials for the use of state-of-the-art high technological devices with enhanced properties. Recently, the 'bottom-up' approach for the fabrication of nanomaterials has received a great deal of attention for its simplicity and cost effectiveness. Tailoring the various parameters during synthesis of selected nanoparticles can be used to fabricate technologically important components. During the last decade, carbon nanotubes (CNTs) have been envisioned for a host of different new applications. Although carbon nanotubes can be synthesized using a variety of techniques, large-scale synthesis is still a great challenge to the researchers. Three methods are commonly used for commercial and bulk productions of carbon nanotubes: arc-discharge, chemical vapor deposition and laser ablation. However, low-cost, large-scale production of high-quality carbon nanotubes is yet to be reported. One of the objectives of the present research is to develop a simplified synthesis method for the production of large-scale, low-cost carbon nanotubes with functionality. Herein, a unique, simple, inexpensive and one-step synthesis route of CNTs and CNTs decorated with nanoparticles is reported. The method is simple arc-discharge in solution (ADS). For this new method, a full-fledged optoelectronically controlled instrumen is reported here to achieve high efficiency and continuous bulk production of CNTs. In this system, a constant gap between the two electrodes is maintained using a photosensor which allows a continuous synthesis of the carbon nanostructures. The system operates in a feedback loop consisting of an electrode-gap detector and an analogue electronic unit, as controller. This computerized feed system was also used in single process step to produce in situ-decorated CNTs with a variety of industrially important nanoparticles. To name a few, we have successfully synthesized CNTs decorated with 3-4 nm ceria, silica and palladium nanoparticles for many industrially relevant applications. This process can be extended to synthesize decorated CNTs with other oxide and metallic nanoparticles. Sixty experimental runs were carried out for parametric analysis varying process parameters including voltage, current and precursors. The amount of yield with time, rate of erosion of the anode, and rate of deposition of carbonaceous materials on the cathode electrode were investigated. Normalized kinetic parameters were evaluated for different amperes from the sets of runs. The production rate of pristine CNT at 75 A is as high as 5.89 ± 0.28 g.min-1. In this study, major emphasis was given on the characterizations of CNTs with and without nanoparticles using various techniques for surface and bulk analysis of the nanostructures. The nanostructures were characterized using transmission electron microscopy, high resolution transmission electron microscopy, scanning transmission electron microscopy, energy dispersive spectroscopy and scanning electron microscopy, x-ray photo electron spectroscopy, x-ray diffraction studies, and surface area analysis. Electron microscopy investigations show that the CNTs, collected from the water and solutions, are highly pure except the presence of some amorphous carbon. Thermogravimetric analysis and chemical oxidation data of CNTs show the good agreement with electron microscopy analysis. The surface area analysis depicts very high surface area. For pristine multi-walled carbon nanotubes, the BET surface area is approximately 80 m2.g-1. X-ray diffraction studies on carbon nanotubes shows that the products are clean. Nano-sized palladium decorated carbon nanotubes are supposed to be very efficient for hydrogen storage. The synthesis for in-situ decoration of palladium nanoparticles on carbon nanotubes using the arc discharge in solution process has been extensively carried out for possible hydrogen storage applications and electronic device fabrication. Palladium nanoparticles were found to form during the reduction of palladium tetra-chloro-square planar complex. The formation of such a complex was investigated using ultraviolet-visible spectroscopic method. Pd-nanoparticles were simultaneously decorated on carbon nanotubes during the rolling of graphene sheets in the arc-discharge process. Zero-loss energy filtered transmission electron microscopy and scanning transmission electron microscopy confirm the presence of 3 nm palladium nanoparticles. The deconvoluted X-ray photoelectron spectroscopy envelope shows the presence of palladium. Surface area measurements using BET method show a surface area of 28 m2.g-1. The discrepancy with pristine CNTs can be explained considering the density of palladium (12023 kg.m-3). Energy dispersive spectroscopy suggests no functionalization of chlorine to the sidewall of carbon nanotubes. The presence of dislodged graphene sheets with wavy morphology as observed with high-resolution transmission electron microscopy supports the formation of CNTs through the 'scroll mechanism'.
Show less - Date Issued
- 2005
- Identifier
- CFE0000450, ucf:46388
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000450
- Title
- FABRICATION AND TRANSPORT STUDIES OF N-TYPE ORGANIC FIELD EFFECT TRANSISTORS USING ALIGNED ARRAY CARBON NANOTUBES ELECTRODES.
- Creator
-
Jimenez, Edwards, Khondaker, Saiful, University of Central Florida
- Abstract / Description
-
We present fabrication of n-type organic field effect transistors (OFETs) using densely aligned array carbon nanotube (CNT) electrodes. The CNTs were aligned with a high linear density via dielectrophoresis (DEP) from an aqueous solution. In order to fabricate the CNT electrodes, aligned CNTs were cut by using electron beam lithography (EBL) and precise oxygen plasma etching. The n-type OFETs were fabricated in a bottom-contact configuration by depositing a thin film of C60 molecules between...
Show moreWe present fabrication of n-type organic field effect transistors (OFETs) using densely aligned array carbon nanotube (CNT) electrodes. The CNTs were aligned with a high linear density via dielectrophoresis (DEP) from an aqueous solution. In order to fabricate the CNT electrodes, aligned CNTs were cut by using electron beam lithography (EBL) and precise oxygen plasma etching. The n-type OFETs were fabricated in a bottom-contact configuration by depositing a thin film of C60 molecules between the CNT source and drain electrodes, and compared against a controlled C60 OFET with gold electrodes. The electron transport measurements of the OFETs using CNT electrodes show better transistor characteristics compared to OFETs using gold electrodes due to improved charge injection from densely aligned and open-ended nanotube tips.
Show less - Date Issued
- 2012
- Identifier
- CFH0004217, ucf:44941
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004217
- Title
- DEVELOPMENT AND APPLICATION STUDY OF NANOSCALE THIN FILM MATERIALS AND POLYMER NANOCOMPOSITES.
- Creator
-
Chen, Hui, Huo, Qun, University of Central Florida
- Abstract / Description
-
This dissertation demonstrated that the manipulation of substances at the molecular or nanometer level can lead to the discovery and development of new materials with interesting properties and important applications. Chapter 1 describes the development of a nanoscale molecular thin film material for corrosion protection. By using a self-assembled monolayer film with a thickness of only about 1 nanometer as a linkage, a covalent bonding was achieved between a polyurethane top coating and an...
Show moreThis dissertation demonstrated that the manipulation of substances at the molecular or nanometer level can lead to the discovery and development of new materials with interesting properties and important applications. Chapter 1 describes the development of a nanoscale molecular thin film material for corrosion protection. By using a self-assembled monolayer film with a thickness of only about 1 nanometer as a linkage, a covalent bonding was achieved between a polyurethane top coating and an aluminum alloy substrate. This covalent bonding between polymer top coating and the aluminum alloy substrate significantly improved the corrosion resistance of the substrate. Chapter 2 and Chapter 3 describe the development of a gold nanoparticle-polymer composite material in different forms with a number of applications. Gold nanoparticles are among one of the most extensively studied nanomaterials. When the size of gold is shrunk to the nanometer scale, many interesting and new physical properties start to appear from gold nanoparticles. The optical properties of gold nanoparticles, particularly the surface plasmon resonance absorption, have been investigated in this dissertation for the development of multifunctional nanocomposite materials. Chapter 2 presents the preparation of a gold nanoparticle/poly(methyl methacrylate) (PMMA) nanocomposite film and the application of such films for microstructure fabrication using a direct laser writing technique. Gold nanoparticles are excellent photon-thermal energy converters due to their large absorption cross section at the surface plasmon resonance region. Upon laser irradiation of the nanocomposite film, the thermal energy converted from the absorbed photon energy by gold nanopaticles induced a complete decomposition of PMMA, leading to the formation of various microstructures on the nanocomposite films. Chapter 3 reports the further development of a nanoparticle/polymer composite nanofiber material fabricated through an electrospinning process. The matrix of the nanofiber is made of two polyelectrolytes, poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH). Three methods were developed to incorporate gold nanoparticles into the polymer matrix. The composite nanofiber materials developed in this study demonstrate multifunctional properties, including good electrical conductivity, photothermal response, and surface-enhanced IR absorption. This material may be used for many important applications including catalysis, chemical and biological sensors, and scaffold materials for tissue engineering. In Chapter 4, another most important nanomaterial, carbon naotubes (CNTs), were introduced as fillers to prepare polymer nanocomposites. A dispersion method for multi-walled carbon nanotubes (MWCNTs) using a conjugated conducting polymer, poly(3-hexylthiophene) (P3HT) as the third component and trifluoroacetic acid (TFA) as a co-solvent was developed. Due to the excellent dispersion of carbon nanotubes in PMMA and enhanced conductivity of the nanocomposites by the conjugated conducting polymers, the prepared composite materials has an extremely low percolation threshold of less than 0.006 wt% of MWCNT content. The potential use of MWCNT/conducting polymer composites for energy storage applications such as suppercapacitors was further investigated by Cyclic Voltammetry (CV), Electrochemical Impedance Spectroscopy (EIS) and charging-discharging cycles. Compared to pure carbon nanotubes, the nanocomposite materials have significantly improved properties and are promising for supercapacitor applications.
Show less - Date Issued
- 2008
- Identifier
- CFE0002265, ucf:47825
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002265
- Title
- Printable Carbon Nanotube Based Multifunctional Nanocomposites for Strain Sensing and Self-heating.
- Creator
-
Wang, Xin, Gou, Jihua, Challapalli, Suryanarayana, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
The unique properties of carbon nanotubes (CNTs) represent a potential for developing a piezo-resistive strain sensor and a resistive heating sheet with a smart structure. Conventional fabrication techniques of CNT based nanocomposites such as molding, casting or spray coating lack the ability to control the geometry and properties of fabricated composites. In order to meet the various requirements of strain sensing or self-heating applications, nanocomposites with complex geometry and...
Show moreThe unique properties of carbon nanotubes (CNTs) represent a potential for developing a piezo-resistive strain sensor and a resistive heating sheet with a smart structure. Conventional fabrication techniques of CNT based nanocomposites such as molding, casting or spray coating lack the ability to control the geometry and properties of fabricated composites. In order to meet the various requirements of strain sensing or self-heating applications, nanocomposites with complex geometry and controllable properties are in high demand. Digital printing technique is able to fabricate CNT films with precisely controlled geometry with the help of computer aided design, and their properties could also be controlled by adjusting the printing parameters. The objective of this study is to investigate the printing-structure-property relationship of CNT based multifunctional nanocomposites fabricated by digitally controlled spray deposition process for strain sensing and self-heating. A spray deposition modeling (SDM) printer that uses a 12-array inkjet nozzle attached to an x-y plotter was developed for the fabrication of CNT layers. Most of previously-reported CNT based nanocomposite strain sensors only have limited stretchability and sensitivity for measuring diverse human motions. Additionally, strain sensors fabricated by traditional techniques are only capable of measuring strain in a single direction, but for monitoring human motion with complicated strain condition, strain sensors that can measure strain from multi-direction are favorable. In this dissertation, highly stretchable (in excess of 45% strain) and sensitive (gauge factor of 35.75) strain sensors with tunable strain gauge factors were fabricated by incorporating CNT layers into polymer substrate using SDM printing technique. The cyclic loading-unloading test results revealed that the composite strain sensors exhibited excellent long-term durability. Due to the flexibility of the printing technique, rosette-typed sensors were fabricated to monitor complicated human motions. These superior sensing capabilities of the fabricated nanocomposites offer potential applications in wearable strain sensors. Resistive heating properties of CNT based nanocomposites were also investigated. The electrically resistive heating of these composites can be a desirable stimulus to activate the shape memory effect of polymer matrix. CNT based nanocomposites fabricated by traditional techniques showed a slow heating rate and same shape recovery ratio at different locations in nanocomposites. However, from the practical applications like smart skin or smart tooling perspective, programmable shape recovery ratio at specified locations are desirable. In this dissertation, the CNT based nanocomposites with a fast heating rate and controllable maximum surface temperature were fabricated using SDM technique. The study on the shape memory effect of nanocomposites showed that their shape recoverability was approximately 100% taking 30s under a low voltage of 40V. It is worth noting that through programming the number of printed CNT layers at different locations, the shape recovery rate could be controlled and localized actuation with the desired recovery ratio was achieved. The high efficiency of heating coupling with wide adjustability of surface temperature and shape recovery ratio at specified locations make the fabricated nanocomposites a promising candidate for electrical actuation applications.
Show less - Date Issued
- 2017
- Identifier
- CFE0006819, ucf:52892
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006819
- Title
- Electronic and Optoelectronic Transport Properties of Carbon Nanotube/Organic Semiconductor Devices.
- Creator
-
Sarker, Biddut, Khondaker, Saiful, Schulte, Alfons, Stolbov, Sergey, Gesquiere, Andre, University of Central Florida
- Abstract / Description
-
Organic field effect transistors (OFETs) are of significant research interest due to their promising applications in large area, low-cost electronic devices such as flexible displays, sensor arrays, and radio-frequency identification tags. A major bottleneck in fabricating high-performance OFET is the large interfacial barrier between the metal electrodes and organic semiconductors (OSC) which results in an inefficient charge injection. Carbon nanotubes (CNTs) are considered to be a promising...
Show moreOrganic field effect transistors (OFETs) are of significant research interest due to their promising applications in large area, low-cost electronic devices such as flexible displays, sensor arrays, and radio-frequency identification tags. A major bottleneck in fabricating high-performance OFET is the large interfacial barrier between the metal electrodes and organic semiconductors (OSC) which results in an inefficient charge injection. Carbon nanotubes (CNTs) are considered to be a promising electrode material which can address this challenge.In this dissertation, we demonstrate fabrication of high-performance OFETs using aligned array CNT electrodes and investigate the detailed electronic transport properties of the fabricated devices. The OFETs with CNT electrodes show a remarkable enhancement in the device performance such as high mobility, high current on-off ratio, higher cutoff frequency, absence of short channel effect and better charge carrier injection than those OFETs with metal electrodes. From the low temperature transport measurements, we show that the charge injection barrier at CNT/OSC interface is smaller than that of the metal/OSC interface. A transition from direct tunneling to Fowler-Nordheim tunneling observed in CNT/OSC system shows further evidence of low injection barrier. A lower activation energy measured for the OFETs with CNT electrodes gives evidence of lower interfacial trap states. Finally, OFETs are demonstrated by directly growing crystalline organic nanowires on aligned array CNT electrodes.In addition to investigating the interfacial barrier at CNT/OSC interface, we also studied photoconduction mechanism of the CNT and CNT/OSC nanocomposite thin film devices. We found that the photoconduction is due to the exciton dissociations and charge carrier separation caused by a Schottky barrier at the metallic electrode/CNT interface and diffusion of the charge carrier through percolating CNT networks. In addition, it is found that photoresponse of the CNT/organic semiconductor can be tuned by changing the weight percentage of CNT into the organic semiconductors.
Show less - Date Issued
- 2012
- Identifier
- CFE0004596, ucf:49217
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004596
- Title
- Nanoelectronic Devices using Carbon Nanotubes and Graphene Electrodes: Fabrication and Electronic Transport Investigations.
- Creator
-
Kang, Narae, Khondaker, Saiful, Leuenberger, Michael, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Fabrication of high-performance electronic devices using the novel semiconductors is essential for developing future electronics which can be applicable in large-area, flexible and transparent displays, sensors and solar cells. One of the major bottlenecks in the fabrication of high-performance devices is a large interfacial barrier formation at metal/semiconductor interface originated from Schottky barrier and interfacial dipole barrier which causes inefficient charge injection at the...
Show moreFabrication of high-performance electronic devices using the novel semiconductors is essential for developing future electronics which can be applicable in large-area, flexible and transparent displays, sensors and solar cells. One of the major bottlenecks in the fabrication of high-performance devices is a large interfacial barrier formation at metal/semiconductor interface originated from Schottky barrier and interfacial dipole barrier which causes inefficient charge injection at the interface. Therefore, having a favorable contact at electrode/semiconductor is highly desirable for high-performance devices fabrication.In this dissertation, the fabrication of nanoelectronic devices and investigation of their transport properties using carbon nanotubes (CNTs) and graphene as electrode materials will be shown. I investigated two types of devices using (i) semiconducting CNTs, and (ii) organic semiconductors (OSC). In the first part of this thesis, I will demonstrate the fabrication of high-performance solution-processed highly enriched (99%) semiconducting CNT thin film transistors (s-CNT TFTs) using densely aligned arrays of metallic CNTs (m-CNTs) for source/drain electrodes. From the electronic transport measurements at room temperature, significant improvements of field-effect mobility, on-conductance, transconductance and current on/off ratio for m-CNT/s-CNT devices were found compared to control palladium (Pd contacted s-CNT devices. From the temperature dependent transport investigation, a lower Schottky barrier height for the m-CNT/s-CNT devices was found compared to the devices with control metal electrodes. The enhanced device performance can be attributed to the unique device geometry as well as strong ?- ? interaction at m-CNT/s-CNT interfaces. In addition, I also investigated s-CNT TFTs using reduced graphene oxide (RGO) electrodes.In the second part of my thesis, I will demonstrate high-performance organic field-effect transistors (OFETs) using different types of graphene electrodes. I show that the performance of OFETs with pentacene as OSC and RGO as electrode can be continuously improved by increasing the carbon sp2 fraction of RGO. The carbon sp2 fractions of RGO were varied by controlling the reduction time. When compared to control Pd electrodes, the mobility of the OFETs shows an improvement of ?200% for 61% sp2 fraction RGO, which further improves to ?500% for 80% RGO electrode. Similarly, I show that when the chemical vapor deposition (CVD) graphene film is used as electrodes in fabricating OFET, the better performance is observed in comparison to RGO electrodes. Our study suggests that, in addition to ?-? interaction at graphene/pentacene interface, the tunable electronic properties of graphene as electrode have a significant role in OFETs performance. For a fundamental understanding of the interface, we fabricated short-channel OFETs with sub-100nm channel length using graphene electrode. From the low temperature electronic transport measurements, a lower charge injection barrier was found compared to control metal electrode. The detailed investigations reported in this thesis clearly indicated that the use of CNT and graphene as electrodes can improve the performance of future nanoelectronic devices.
Show less - Date Issued
- 2015
- Identifier
- CFE0006039, ucf:50982
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006039
- Title
- Parallel fabrication and transport properties of carbon nanotube single electron transistors.
- Creator
-
Islam, Muhammad, Khondaker, Saiful, Chow, Lee, Stolbov, Sergey, Zhai, Lei, University of Central Florida
- Abstract / Description
-
Single electron transistors (SET) have attracted significant attention as a potential building block for post CMOS nanoelectronic devices. However, lack of reproducible and parallel fabrication approach and room temperature operation are the two major bottlenecks for practical realization of SET based devices. In this thesis, I demonstrate large scale single electron transistors fabrication techniques using solution processed single wall carbon nanotubes (SWNTs) and studied their electron...
Show moreSingle electron transistors (SET) have attracted significant attention as a potential building block for post CMOS nanoelectronic devices. However, lack of reproducible and parallel fabrication approach and room temperature operation are the two major bottlenecks for practical realization of SET based devices. In this thesis, I demonstrate large scale single electron transistors fabrication techniques using solution processed single wall carbon nanotubes (SWNTs) and studied their electron transport properties. The approach is based on the assembly of individual SWNTs via dielectrophoresis (DEP) at the selected position of the circuit and formation of tunnel barriers on SWNT. Two different techniques: i) metal-SWNT Schottky contact, and ii) mechanical templating of SWNTs were used for tunnel barrier creation.Low temperature (4.2K) transport measurement of 100 nm long metal-SWNT Schottky contact devices show that 93% of the devices with contact resistance (RT) (>) 100 K? show SET behavior. Majority (90%) of the devices with 100 K? (<) RT (<) 1 M?, show periodic, well-de?ned Coulomb diamonds with a charging energy ~ 15 meV, represents single electron tunnelling through a single quantum dot (QD), defined by the top contact. For high RT ((>) 1M?), devices show multiple QDs behaviors, while QD was not formed for low RT ((<) 100 K?) devices. From the transport study of 50 SWNT devices, a total of 38 devices show SET behavior giving an yield of 76%. I also demonstrate room temperature operating SET by using mechanical template technique. In mechanical template method individual SWNT is placed on top of a Al/Al2O3 local gate which bends the SWNT at the edge and tunnel barriers are created. SET devices fabricated with a template width of ~20 nm shows room temperature operation with a charging energy of ~150 meV. I also discussed the detailed transport spectroscopy of the devices.
Show less - Date Issued
- 2015
- Identifier
- CFE0006037, ucf:50987
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006037
- Title
- Charge and Spin Transport in Low-Dimensional Materials.
- Creator
-
Ahmadi, Amin, Mucciolo, Eduardo, Del Barco, Enrique, Ishigami, Masa, Guo, Jing, University of Central Florida
- Abstract / Description
-
My research has been focused on two main areas. First, electronic transports in chiral carbonnanotubes in the presence of charged adatoms. To study such systems we employed recursiveGreens function technique to evaluate the conductance using the Landauer formula. Comparingwith the experimental data, we determined the effective amplitude and the range of scatteringpotentials. In addition, using a similar approach we explained qualitatively an unusual conductancefeature in a metallic carbon...
Show moreMy research has been focused on two main areas. First, electronic transports in chiral carbonnanotubes in the presence of charged adatoms. To study such systems we employed recursiveGreens function technique to evaluate the conductance using the Landauer formula. Comparingwith the experimental data, we determined the effective amplitude and the range of scatteringpotentials. In addition, using a similar approach we explained qualitatively an unusual conductancefeature in a metallic carbon nanotube. The second part of my study was concerned to the dynamicalspin injection and spin currents in low-dimensional materials. We have developed an atomisticmodel to express the injected spin current in terms of the systems Greens function. The newformulation provides a framework to study the spin injection and relaxation of a system with anarbitrary structure.
Show less - Date Issued
- 2017
- Identifier
- CFE0006550, ucf:51343
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006550