Current Search: E. coli (x)
-
-
Title
-
COMPARISON OF THM FORMATION DURING DISINFECTION: FERRATE VERSUS FREE CHLORINE FOR DIFFERENT SOURCE WATERS.
-
Creator
-
Mukattash, Adhem, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
The objective of the study was to compare the trihalomethanes (THMs) produced from ferrate with hypochlorite and to determine how different the THM production would be for a given degree of disinfection (3 log reduction in Heterotrophic Plate Count (HPC)). Different water samples were collected from Lake Claire, Atlantic Ocean, and secondary effluent from an advanced wastewater treatment plant. THM formation was determined using a standard assay over 7 days at room temperature. In addition...
Show moreThe objective of the study was to compare the trihalomethanes (THMs) produced from ferrate with hypochlorite and to determine how different the THM production would be for a given degree of disinfection (3 log reduction in Heterotrophic Plate Count (HPC)). Different water samples were collected from Lake Claire, Atlantic Ocean, and secondary effluent from an advanced wastewater treatment plant. THM formation was determined using a standard assay over 7 days at room temperature. In addition samples were tested for Total Coliform Escherichia coli (TC/E.coli), and heterotrophic bacteria using HPC by spreadplating on R2A agar. Dissolved organic carbon (DOC) was measured as well. Dosages of 2, 5, and 10 ppm of hypochlorite and ferrate were used for Lake Claire and Atlantic Ocean water, while 1, 2, and 5 ppm dosages were used for wastewater treatment effluent. Ferrate resulted in 48.3% ± 11.2% less THM produced for the same level of disinfection (i.e. approximately 3 logs reduction in HPC). Oxidation of DOC was relatively small with a 6.1 to 11.6 % decrease in DOC being observed for ferrate doses from 2 to 10 mg/L. Free chlorine oxidation of DOC was negligible.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001734, ucf:47324
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001734
-
-
Title
-
Screening of Quantum Dots for Toxicity on the Growth and Viability of Escherichia coli.
-
Creator
-
Tharkur, Jeremy, Santra, Swadeshmukul, Self, William, Moore, Sean, University of Central Florida
-
Abstract / Description
-
Heavy metal (HM) containing quantum dots (Qdots) are increasingly used in commercial products due to their unique electronic, optoelectronic, optical and magnetic properties. Once disposed to the landfill, environmental weathering is likely to compromise HM Qdot integrity, leading to release of heavy metal ions. To minimize any negative environmental impact of HM Qdots, there is an increasing demand for developing HM free or environmentally-friendly surface modified HM Qdot alternatives. In...
Show moreHeavy metal (HM) containing quantum dots (Qdots) are increasingly used in commercial products due to their unique electronic, optoelectronic, optical and magnetic properties. Once disposed to the landfill, environmental weathering is likely to compromise HM Qdot integrity, leading to release of heavy metal ions. To minimize any negative environmental impact of HM Qdots, there is an increasing demand for developing HM free or environmentally-friendly surface modified HM Qdot alternatives. In this study, synthesis of HM free ZnS:Mn/ZnS and surface modified HM CdS:Mn/ZnS Qdots (using N-acetylcysteine, NAC, and Dihydrolipoic acid, DHLA) and their potential toxicity assessment using E. coli as a model system is reported. NAC and DHLA are known antioxidants and therefore expected to reduce HM induced toxicity and improve colloidal stability of Qdots. All Qdots were synthesized at room temperature using a reverse micelle microemulsion method. Qdots were fully characterized using UV-visible absorption spectroscopy, fluorescence emission spectroscopy, zeta potential, Nuclear Magnetic Resonance spectroscopy (NMR) and High Resolution Transmission Electron Microscopy (HRTEM). Qdot environmental weathering was simulated by treating Qdots with concentrated acid (6N HCl). Qdot toxicity was evaluated on E. coli growth and viability using growth curves, turbidity and bactericidal assays (CFU). Results show that Zn based Qdots exhibit reduced toxicity on E.coli growth and viability when compared to Cd based Qdots. In addition, surface modification with NAC and DHLA minimized toxicity of Cd based Qdots. In summary, Zn based Qdots appear to be more environmental-friendly than Cd based Qdots.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005426, ucf:50416
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005426
-
-
Title
-
BACTERIA THAT RESIST CENTRIFUGAL FORCE.
-
Creator
-
Kessler, Nickolas, Moore, Sean, University of Central Florida
-
Abstract / Description
-
Our lab discovered that approximately 1 in 10,000 Escherichia coli cells in stationary phase remain in suspension after a high g-force centrifuge event. To establish the mechanism behind this curious phenotype, multiple mutant strains of E. coli were independently evolved such that the majority of their populations resisted migration when exposed to high centrifugal forces. Genomic DNA sequencing of the mutants' revealed unique, isolated mutations in genes involved in capsule synthesis and...
Show moreOur lab discovered that approximately 1 in 10,000 Escherichia coli cells in stationary phase remain in suspension after a high g-force centrifuge event. To establish the mechanism behind this curious phenotype, multiple mutant strains of E. coli were independently evolved such that the majority of their populations resisted migration when exposed to high centrifugal forces. Genomic DNA sequencing of the mutants' revealed unique, isolated mutations in genes involved in capsule synthesis and exopolysaccharide (EPS) production. Each mutant exhibits a novel mechanism that allows them to remain in suspension. The mutants were further characterized by determining their growth rates, strengths of resistance to various centrifugal forces, the phenotype's dependence on a carbon source, and timing of the phenotype's presentation. The results revealed: comparable mutant generation times to the wild-type strain, variable resistance to centrifugal force, phenotype dependence on carbon source, and phenotype presentation during early stationary phase. To interrogate the mechanism by which these cells stay in suspension the production of EPS was quantified, and gene knock-outs were performed. Quantification of the EPS revealed approximately a seventeen-fold increase in EPS in the mutants' compared to the wild-type strain. Gene knock-outs revealed the EPS produced can be attached to the outer-membrane or freely secreted into the media by different mechanisms. In addition, this mechanism was further confirmed to be responsible for the centrifuge resistant trait by attaching extracted EPS to polystyrene microspheres. Experimental results show that mutant extracted EPS treated beads caused increased bead retention in suspension compared to wild-type EPS treated beads. These results reveal that E. coli is using a novel mechanism to adapt to a new environmental factor introduced to remove the bacteria. With the discovery of this mechanism and the transferability to inorganic objects industrial applications are now envisioned where particle sedimentation is controllable and mixtures remain homogenized by attaching optically transparent biomolecules.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFH2000332, ucf:45800
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000332
-
-
Title
-
THE GLYCINE AND PROLINE REDUCTASE SYSTEMS: AN EVOLUTIONARY PERSPECTIVE AND PRESCENCE IN ENTEROBACTERIACEAE.
-
Creator
-
Witt, Joshua, Self, William, University of Central Florida
-
Abstract / Description
-
The Glycine and Proline Reduction systems are two of the best characterized selenoenzymes in bacteria and have been found to occur in a wide variety of clostridia . These enzymes are utilized to reduce glycine or D-proline to obtain energy via substrate level phosporylation or membrane gradients, respectively [6, 7]. This includes the pathogens C. difficile and C. botulinum [5, 8]. Strains of C. difficile are activate toxigenic pathways whenever either of these pathways is active within the...
Show moreThe Glycine and Proline Reduction systems are two of the best characterized selenoenzymes in bacteria and have been found to occur in a wide variety of clostridia . These enzymes are utilized to reduce glycine or D-proline to obtain energy via substrate level phosporylation or membrane gradients, respectively [6, 7]. This includes the pathogens C. difficile and C. botulinum [5, 8]. Strains of C. difficile are activate toxigenic pathways whenever either of these pathways is active within the cell [5, 8]. Though evolutionary studies have been conducted on ammonia producing bacteria none has been done to directly characterize these two system by themselves. This includes an understanding of whether or not this system is transferred between organisms, as many of the clostridia that are to be studied are known to have an "open genome." [8, 10] With this information we were able to generate a phylogenic model of the proline and glycine reduction systems. Through this analysis, we were able to account for many clostridial organisms that contain the system, but also many other organisms as well. These included enterobacteriaceae including a strain of the model organism, Escherichia coli. It was further concluded that Glycine Reductase was a much less centralized system and included a wide range of taxa while Proline Reductase was much more centralized to being within the phyla of firmicutes. It was also concluded that the strain of E. coli has a fully functional operon for Glycine Reductase.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFH0004506, ucf:45149
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004506
-
-
Title
-
AB Toxins: Recovery from Intoxication and Relative Potencies.
-
Creator
-
Cherubin, Patrick, Teter, Kenneth, Naser, Saleh, Jewett, Travis, Zervos, Antonis, University of Central Florida
-
Abstract / Description
-
AB-type protein toxins have a catalytic A subunit attached to a cell-binding B subunit. Ricin, Shiga toxin (Stx), exotoxin A, and diphtheria toxin are AB toxins that act within the host cytosol and kill the host cell through pathways involving the inhibition of protein synthesis. Our overall goal is to help elucidate the cellular basis of intoxication for therapeutic development. According to the current model of intoxication, the effect of AB toxins is irreversible. To test this model, we...
Show moreAB-type protein toxins have a catalytic A subunit attached to a cell-binding B subunit. Ricin, Shiga toxin (Stx), exotoxin A, and diphtheria toxin are AB toxins that act within the host cytosol and kill the host cell through pathways involving the inhibition of protein synthesis. Our overall goal is to help elucidate the cellular basis of intoxication for therapeutic development. According to the current model of intoxication, the effect of AB toxins is irreversible. To test this model, we developed a system that uses flow cytometry and a fluorescent reporter to examine the cellular potency of toxins that inhibit protein synthesis. Our data show that cells can recover from intoxication: cells with a partial loss of protein synthesis will, upon removal of the toxin, increase the level of protein production and survive the toxin exposure. This work challenges the prevailing model of intoxication by suggesting ongoing toxin delivery to the cytosol is required to maintain the inhibition of protein synthesis and ultimately cause apoptosis. We also used our system to examine the basis for the greater cellular potency of Stx1 in comparison to Stx2. We found that cells intoxicated with Stx1a behave differently than those intoxicated with Stx2: cells exposed to Stx1a exhibited a population-wide loss of protein synthesis, while cells exposed to Stx2a or Stx2c exhibited a dose-dependent bimodal response in which one subpopulation of cells was unaffected (i.e., no loss of protein synthesis). Additional experiments indicated the identity of the Stx B subunit is a major factor in determining the uniform vs. bimodal response to Stx subtypes. This work provides evidence explaining, in part, the differential toxicity between Stx1 and Stx2. Overall, our collective observations provide experimental support for the development of inhibitors and post-exposure therapeutics that restrict, but not necessarily block, toxin delivery to the host cell.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007613, ucf:52523
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007613
-
-
Title
-
An Assessment of Biosorption Activated Media for the Removal of Pollutants in Up-Flow Stormwater Treatment Systems.
-
Creator
-
Hood, Andrew, Randall, Andrew, Wanielista, Martin, Chopra, Manoj, O'Reilly, Andrew, Moore, Sean, University of Central Florida
-
Abstract / Description
-
Nitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical...
Show moreNitrogen and phosphorus are often the limiting nutrients for marine and freshwater systems respectively. Additionally, stormwater often contains elevated levels of pathogens which can pollute the receiving water body and impact reuse applications [1-4]. The reduction of limiting nutrients and pathogens is a common primary target for stormwater best management practices (BMPs) [5]. Traditional BMPs, such as retention/detention treatment ponds require large footprints and may not be practical in ultra-urban environments where above ground space is limited. Upflow filters utilizing biosorption activated media (BAM) that can be placed underground offer a small footprint alternative. Additionally, BAM upflow filters can be installed at the discharge point of traditional stormwater ponds to provide further treatment. This research simulated stormwater that had already been treated for solids removal; thus, most of the nutrients and solids in the influent were assumed to be as non-settable suspended solids or dissolved solids. Three different BAM mixtures in an upflow filter configuration were compared for the parameters of nitrogen, phosphorus, total coliform, E. coli, and heterotrophic plate count (HPC). Additionally, genetic testing was conducted using Polymerase Chain Reaction (PCR), in conjunction with a nitrogen mass balance, to determine if Anammox was a significant player in the nitrogen removal. The columns were run at both 22-minute and 220-minute Empty Bed Contact Times (EBCTs). All the BAM mixtures analyzed were shown to be capable at the removal of nitrogen, phosphorus, and total coliform during both the 22-minute and 220-minute EBCTs, with BAM #1 having the highest removal performance for all three parameters during both EBCTs. All BAM mixtures experienced an increase in HPC. Additionally, PCR analysis confirmed the presence of Anammox in the biofilm and via mass balance it was determined that the biological nitrogen removal was due to Anammox and endogenous denitrification with Anammox being a significant mechanism.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007817, ucf:52875
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007817