Current Search: Encapsulation (x)
View All Items
- Title
- Effects of Surfactant Concentrations on Perovskite Emitters Embedded in Polystyrene.
- Creator
-
Calkins, Eric, Dong, Yajie, Tetard, Laurene, Zhai, Lei, University of Central Florida
- Abstract / Description
-
With their simple fabrication, narrow light spectrum, and color tunability, a class of materials known as perovskites are emerging as promising candidates for light emission applications. These materials, when exposed to normal atmospheric conditions show significant degradation. Improved protection has been demonstrated by embedding perovskites in polymers. Furthermore, the addition of a surfactant into the precursor solution has been shown to increase stability and allow for color tuning by...
Show moreWith their simple fabrication, narrow light spectrum, and color tunability, a class of materials known as perovskites are emerging as promising candidates for light emission applications. These materials, when exposed to normal atmospheric conditions show significant degradation. Improved protection has been demonstrated by embedding perovskites in polymers. Furthermore, the addition of a surfactant into the precursor solution has been shown to increase stability and allow for color tuning by exploiting quantum confinement effects. However, the effects of surfactants typically used to stabilize perovskites in solution have not been explored in this polymer embedding strategy. Here we determine the physical and optical emission changes produced by modifying the concentration of octylamine, butylamine, and oleylamine in the perovskite precursor solution prior to embedding into a polystyrene substrate. Using optical emission spectroscopy, we measure emission spectra of perovskite nanocrystals embedded in the polymer. Changes in morphology and dispersion of the perovskite particles within the polymer are observed using UV illuminated optical microscopy. XRD data suggests increased crystallinity with the addition of short chain surfactant. Our measurements in emission show that the location of the emission peak and overall shape of the emission spectra change when longer chain surfactant is added while short chain surfactant reduces nanorod formation without a significant change in particle dispersion or emission. The work suggests that increased long chain surfactant concentration prohibits perovskite crystal growth within the polymer leading to increased optical transparency and quantum confinement effects observable through photo luminescent emission.
Show less - Date Issued
- 2017
- Identifier
- CFE0007119, ucf:51940
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007119
- Title
- EFFECT OF ANNEALING ON COPPER THIN FILMS:THE CLASSICAL SIZE EFFECT AND AGGLOMERATION.
- Creator
-
Gadkari, Parag, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
With continued shrinking of CMOS technology to reduce the gate delay times, an increase in the resistivity of the metal corresponding to the wire dimension is a concern. This phenomenon of increase in resistivity with decreasing dimension of the thin metallic film or interconnect is known as the "classical size effect". Various theories have been postulated to explain the phenomenon of classical size effect; these theories can be broadly classified as resistivity due to scattering arising...
Show moreWith continued shrinking of CMOS technology to reduce the gate delay times, an increase in the resistivity of the metal corresponding to the wire dimension is a concern. This phenomenon of increase in resistivity with decreasing dimension of the thin metallic film or interconnect is known as the "classical size effect". Various theories have been postulated to explain the phenomenon of classical size effect; these theories can be broadly classified as resistivity due to scattering arising from surface and grain boundaries. The total resistivity of metals depends on the electron scattering due to impurities, phonons, surfaces, grain boundaries, and other crystal defects. Managing the size effect in a practical and manufacturing way is of major concern to the microelectronics industry. Since each of the processes (phonon, surface and grain boundary scattering) adds to the resistivity and are interrelated, it further complicates managing the size effect. However, these effects have been separately studied. In this work, the effect of annealing on the classical size effect in Cu thin films deposited on SiO2 substrate is investigated. Polycrystalline Cu thin films having thicknesses in the range of 10nm to 200nm were ultra high vacuum sputter deposited on thermally grown SiO2 surfaces. The films were annealed at temperatures in the range of 150°C to 800°C in argon and argon+3% hydrogen gases. The un-annealed Cu thin films exhibit higher resistivity than the annealed films. The resistivities of un-annealed films were in good agreement with Mayadas and Shatzkes model. When annealed the films undergoes grain growth resulting in lowering the resistivities by about 20%-30% thereby confirming the role of grain size on resistivity of the film. However, there is a limit to annealing, i.e. agglomeration phenomenon. Agglomeration is a thermally activated process resulting in a reduction of the free energy of the filmsubstrate system and can occur well below the melting point of the material by surface and interfacial diffusion. The reduction of film-substrate interfacial energy, film-surface interfacial energy and stresses within the film are possible driving forces for agglomeration. This work also includes the study of agglomeration phenomenon. The agglomeration behavior of Cu is investigated and compared with that of Ru, Au and Pt thin films with thicknesses in the range of 10 nm to 100 nm UHV deposited on thermally grown SiO2 substrate. The films were annealed at temperatures in the range of 150°C to 800°C in argon and argon+3% hydrogen gases. Scanning electron microscopy was used to investigate the agglomeration behavior, and transmission electron microscopy was used to characterize the microstructure of the as-deposited and annealed films. The agglomeration sequence in all the films is found to follow a two step process of void nucleation and void growth. However, void growth in Au and Pt thin films is different from Cu and Ru thin films. Residual stress and adhesion were observed to play important part in deciding the mode of void growth in Au and Pt thin films. Lastly, it is also observed that the tendency for agglomeration can be reduced by encapsulating the metal film with an oxide overlayer, which in turn improves the resistivity of the thin film due to prolonged grain growth without film breakup.
Show less - Date Issued
- 2005
- Identifier
- CFE0000496, ucf:46363
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000496
- Title
- Thermally induced motion, collision and mixing of levitated droplets.
- Creator
-
Davanlou, Ashkan, Kumar, Ranganathan, Cho, Hyoung Jin, Deng, Weiwei, Mansy, Hansen, Shivamoggi, Bhimsen, University of Central Florida
- Abstract / Description
-
This dissertation investigates the motion of a levitated droplet experimentally and analytically against the Marangoni flow in an immiscible outer fluid at higher speeds than is possible currently. Based on our earlier experiments, when a droplet is released from a height of 1.5 (-) 4 times its diameter from the liquid surface, it can overcome the impact and stay levitated at the liquid-air interface due to the existence of an air gap between the droplet and the liquid film. In order to...
Show moreThis dissertation investigates the motion of a levitated droplet experimentally and analytically against the Marangoni flow in an immiscible outer fluid at higher speeds than is possible currently. Based on our earlier experiments, when a droplet is released from a height of 1.5 (-) 4 times its diameter from the liquid surface, it can overcome the impact and stay levitated at the liquid-air interface due to the existence of an air gap between the droplet and the liquid film. In order to explain this behavior of droplet traveling against the counter-current motion, we propose a simple approach: first, the Marangoni convection inside the thin film is considered without the droplet floating on the surface. By using a level-set method and solving the Navier-Stokes equation, the free surface velocity and deformation are calculated. Then, these quantities are used to solve for droplet velocity and drag coefficient simultaneously using a force balance. In order to compare the simulation results, experiments with levitated water droplets on an immiscible carrier liquid, FC-43, were conducted for various temperature gradients, and droplet velocities were measured at different locations using high-speed imaging. The experimental results are in good agreement with the developed theoretical model. For a Reynolds number range of 2-32, it is shown that the drag coefficients are up to 66% higher than those for the fully immersed sphere at the same Reynolds numbers. A correlation is proposed to calculate the drag coefficient of levitated droplets for various temperature drops across the channel.For the first time, it is shown that it is possible to realize the natural coalescence of droplets through Marangoni effect without any external stimulation, and deliver the coalesced droplet to a certain destination through the use of surface tension gradients. The effects of the various shapes and sizes upon collision are studied. Regions of coalescence and stretching separation of colliding droplets are delineated based on Weber number and impact number. The existence of the transition line between coalescence and stretching separation in this passive mode of transport is similar to what was observed in the literature for forced coalescence at significantly higher Weber numbers. It is also found that a thermocapillary environment improves the mixing process. In order to illustrate and quantify the mixing phenomenon, the dispensed droplets were made of potassium hydroxide and phenolphthalein which is used as a pH indicator. The experiments show the possibility to reach mixing rates as high as 74% within 120 ms. This study offers new insight to thermo-coalescence and demonstrates how natural coalescence could be used to transport, mix and collect biochemical assays more efficiently. The results of this research can be engineered to enhance the performance of self-cleaning surfaces and micro-total analysis systems ((&)#181;TAS), where sample transport, filtration, chemical reactions, separation and detection are of great interest.
Show less - Date Issued
- 2015
- Identifier
- CFE0006213, ucf:51106
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006213
- Title
- Structure, stability, vibrational, thermodynamic, and catalytic properties of metal nanostructures: size, shape, support, and adsorbate effects.
- Creator
-
Behafarid, Farzad, Roldan Cuenya, Beatriz, Chow, Lee, Heinrich, Helge, Kara, Abdelkader, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
Recent advances in nanoscience and nanotechnology have provided the scientific community with exciting new opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. In this dissertation, several challenges have been tackled in aspects related to nanoparticle (NP) synthesis and characterization, allowing us to make homogenous, size- and shape-selected NPs via the use of colloidal chemistry,...
Show moreRecent advances in nanoscience and nanotechnology have provided the scientific community with exciting new opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. In this dissertation, several challenges have been tackled in aspects related to nanoparticle (NP) synthesis and characterization, allowing us to make homogenous, size- and shape-selected NPs via the use of colloidal chemistry, and to gain in depth understanding of their distinct physical and chemical properties via the synergistic use of a variety of ex situ, in situ, and operando experimental tools. A variety of phenomena relevant to nanosized materials were investigated, including the role of the NP size and shape in the thermodynamic and electronic properties of NPs, their thermal stability, NP-support interactions, coarsening phenomena, and the evolution of the NP structure and chemical state under different environments and reaction conditions.
Show less - Date Issued
- 2012
- Identifier
- CFE0004779, ucf:49796
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004779