Current Search: Large-Scale Distributed System (x)
View All Items
- Title
- PLANNING AND SCHEDULING FOR LARGE-SCALEDISTRIBUTED SYSTEMS.
- Creator
-
Yu, Han, Marinescu, Dan, University of Central Florida
- Abstract / Description
-
Many applications require computing resources well beyond those available on any single system. Simulations of atomic and subatomic systems with application to material science, computations related to study of natural sciences, and computer-aided design are examples of applications that can benefit from the resource-rich environment provided by a large collection of autonomous systems interconnected by high-speed networks. To transform such a collection of systems into a user's virtual...
Show moreMany applications require computing resources well beyond those available on any single system. Simulations of atomic and subatomic systems with application to material science, computations related to study of natural sciences, and computer-aided design are examples of applications that can benefit from the resource-rich environment provided by a large collection of autonomous systems interconnected by high-speed networks. To transform such a collection of systems into a user's virtual machine, we have to develop new algorithms for coordination, planning, scheduling, resource discovery, and other functions that can be automated. Then we can develop societal services based upon these algorithms, which hide the complexity of the computing system for users. In this dissertation, we address the problem of planning and scheduling for large-scale distributed systems. We discuss a model of the system, analyze the need for planning, scheduling, and plan switching to cope with a dynamically changing environment, present algorithms for the three functions, report the simulation results to study the performance of the algorithms, and introduce an architecture for an intelligent large-scale distributed system.
Show less - Date Issued
- 2005
- Identifier
- CFE0000781, ucf:46595
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000781
- Title
- COORDINATION, MATCHMAKING, AND RESOURCE ALLOCATION FOR LARGE-SCALE DISTRIBUTED SYSTEMS.
- Creator
-
Bai, Xin, Marinescu, Dan, University of Central Florida
- Abstract / Description
-
While existing grid environments cater to specific needs of a particular user community, we need to go beyond them and consider general-purpose large-scale distributed systems consisting of large collections of heterogeneous computers and communication systems shared by a large user population with very diverse requirements. Coordination, matchmaking, and resource allocation are among the essential functions of large-scale distributed systems. Although deterministic approaches for...
Show moreWhile existing grid environments cater to specific needs of a particular user community, we need to go beyond them and consider general-purpose large-scale distributed systems consisting of large collections of heterogeneous computers and communication systems shared by a large user population with very diverse requirements. Coordination, matchmaking, and resource allocation are among the essential functions of large-scale distributed systems. Although deterministic approaches for coordination, matchmaking, and resource allocation have been well studied, they are not suitable for large-scale distributed systems due to the large-scale, the autonomy, and the dynamics of the systems. We have to seek for nondeterministic solutions for large-scale distributed systems. In this dissertation we describe our work on a coordination service, a matchmaking service, and a macro-economic resource allocation model for large-scale distributed systems. The coordination service coordinates the execution of complex tasks in a dynamic environment, the matchmaking service supports finding the appropriate resources for users, and the macro-economic resource allocation model allows a broker to mediate resource providers who want to maximize their revenues and resource consumers who want to get the best resources at the lowest possible price, with some global objectives, e.g., to maximize the resource utilization of the system.
Show less - Date Issued
- 2006
- Identifier
- CFE0001172, ucf:46845
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001172
- Title
- Harmony Oriented Architecture.
- Creator
-
Martin, Kyle, Hua, Kien, Wu, Annie, Heinrich, Mark, University of Central Florida
- Abstract / Description
-
This thesis presents Harmony Oriented Architecture: a novel architectural paradigm that applies the principles of Harmony Oriented Programming to the architecture of scalable and evolvable distributed systems. It is motivated by research on Ultra Large Scale systems that has revealed inherent limitations in human ability to design large-scale software systems that can only be overcome through radical alternatives to traditional object-oriented software engineering practice that simplifies the...
Show moreThis thesis presents Harmony Oriented Architecture: a novel architectural paradigm that applies the principles of Harmony Oriented Programming to the architecture of scalable and evolvable distributed systems. It is motivated by research on Ultra Large Scale systems that has revealed inherent limitations in human ability to design large-scale software systems that can only be overcome through radical alternatives to traditional object-oriented software engineering practice that simplifies the construction of highly scalable and evolvable system.HOP eschews encapsulation and information hiding, the core principles of object- oriented design, in favor of exposure and information sharing through a spatial abstraction. This helps to avoid the brittle interface dependencies that impede the evolution of object-oriented software. HOA extends these concepts to distributed systems resulting in an architecture in which application components are represented by objects in a spatial database and executed in strict isolation using an embedded application server. Application components store their state entirely in the database and interact solely by diffusing data into a space for proximate components to observe. This architecture provides a high degree of decoupling, isolation, and state exposure allowing highly scalable and evolvable applications to be built.A proof-of-concept prototype of a non-distributed HOA middleware platform supporting JavaScript application components is implemented and evaluated. Results show remarkably good performance considering that little effort was made to optimize the implementation.
Show less - Date Issued
- 2011
- Identifier
- CFE0004480, ucf:49298
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004480
- Title
- SCHEDULING AND RESOURCE MANAGEMENT FOR COMPLEX SYSTEMS: FROM LARGE-SCALE DISTRIBUTED SYSTEMS TO VERY LARGE SENSOR NETWORKS.
- Creator
-
Yu, Chen, Marinescu, Dan, University of Central Florida
- Abstract / Description
-
In this dissertation, we focus on multiple levels of optimized resource management techniques. We first consider a classic resource management problem, namely the scheduling of data-intensive applications. We define the Divisible Load Scheduling (DLS) problem, outline the system model based on the assumption that data staging and all communication with the sites can be done in parallel, and introduce a set of optimal divisible load scheduling algorithms and the related fault-tolerant...
Show moreIn this dissertation, we focus on multiple levels of optimized resource management techniques. We first consider a classic resource management problem, namely the scheduling of data-intensive applications. We define the Divisible Load Scheduling (DLS) problem, outline the system model based on the assumption that data staging and all communication with the sites can be done in parallel, and introduce a set of optimal divisible load scheduling algorithms and the related fault-tolerant coordination algorithm. The DLS algorithms introduced in this dissertation exploit parallel communication, consider realistic scenarios regarding the time when heterogeneous computing systems are available, and generate optimal schedules. Performance studies show that these algorithms perform better than divisible load scheduling algorithms based upon sequential communication. We have developed a self-organization model for resource management in distributed systems consisting of a very large number of sites with excess computing capacity. This self-organization model is inspired by biological metaphors and uses the concept of varying energy levels to express activity and goal satisfaction. The model is applied to Pleiades, a service-oriented architecture based on resource virtualization. The self-organization model for complex computing and communication systems is applied to Very Large Sensor Networks (VLSNs). An algorithm for self-organization of anonymous sensor nodes called SFSN (Scale-free Sensor Networks) and an algorithm utilizing the Small-worlds principle called SWAS (Small-worlds of Anonymous Sensors) are introduced. The SFSN algorithm is designed for VLSNs consisting of a fairly large number of inexpensive sensors with limited resources. An important feature of the algorithm is the ability to interconnect sensors without an identity, or physical address used by traditional communication and coordination protocols. During the self-organization phase, the collision-free communication channels allowing a sensor to synchronously forward information to the members of its proximity set are established and the communication pattern is followed during the activity phases. Simulation study shows that the SFSN ensures the scalability, limits the amount of communication and the complexity of coordination. The SWAS algorithm is further improved from SFSN by applying the Small-worlds principle. It is unique in its ability to create a sensor network with a topology approximating small-world networks. Rather than creating shortcuts between pairs of diametrically positioned nodes in a logical ring, we end up with something resembling a double-stranded DNA. By exploiting Small-worlds principle we combine two desirable features of networks, namely high clustering and small path length.
Show less - Date Issued
- 2009
- Identifier
- CFE0002907, ucf:48004
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002907