Current Search: MATLAB (x)
-
-
Title
-
DEVELOPMENT OF A MOTOR SPEED CONTROL SYSTEM USING MATLAB AND SIMULINK, IMPLEMENTED WITH A DIGITAL SIGNAL PROCESSOR.
-
Creator
-
Klee, Andrew, Weeks, Arthur, University of Central Florida
-
Abstract / Description
-
This thesis describes an improved methodology for embedded software development. MATLAB and Simulink allow engineers to simplify algorithm development and avoid duplication of effort in deploying these algorithms to the end hardware. Special new hardware targeting capabilities of MATLAB and Simulink are described in detail. A motor control system design served to demonstrate the efficacy of this new method. Initial data was collected to help model the motor in Simulink. This allowed for the...
Show moreThis thesis describes an improved methodology for embedded software development. MATLAB and Simulink allow engineers to simplify algorithm development and avoid duplication of effort in deploying these algorithms to the end hardware. Special new hardware targeting capabilities of MATLAB and Simulink are described in detail. A motor control system design served to demonstrate the efficacy of this new method. Initial data was collected to help model the motor in Simulink. This allowed for the design of the open and closed loop control systems. The designed system was very effective, with good response and no steady state error. The entire design process and deployment to a digital signal processor took significantly less time and effort than other typical methods. The results of the control system design as well as the details of these development improvements are described.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000477, ucf:46367
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000477
-
-
Title
-
TWO DIMENSIONAL LINEAR FINITE ELEMENT ANALYSIS OF POST-TENSIONED BEAMS WITH EMBEDDED ELEMENTS USING MATLAB.
-
Creator
-
Hutchinson, Rodolfo, Onyemelukwe, Okey, University of Central Florida
-
Abstract / Description
-
The objective of this research project was to create a Finite Element Routine for the Linear Analysis of Post-Tensioned beams using the program CALFEM® [20] developed at the division of Structural Mechanics in Lund University, Sweden. The program CALFEM and our own made files were written in MATLAB, an easy to learn and user-friendly computer language. The approach used in this thesis for analyzing the composite beam consists in embedding the steel tendons at the exact location where they...
Show moreThe objective of this research project was to create a Finite Element Routine for the Linear Analysis of Post-Tensioned beams using the program CALFEM® [20] developed at the division of Structural Mechanics in Lund University, Sweden. The program CALFEM and our own made files were written in MATLAB, an easy to learn and user-friendly computer language. The approach used in this thesis for analyzing the composite beam consists in embedding the steel tendons at the exact location where they intersect the concrete parent elements, without moving the concrete parent element nodes. The steel tendons are represented as one dimensional bar elements inserted into the concrete parent elements, which at the same time are represented as 8 node Iso-parametric plane elements. The theory presented in Ref. [4] served as basis for the modeling of the post-tensioned beams; however it only explained the procedure for modeling simple reinforced concrete beams, due to this we needed to make the appropriate adjustments so we could model post-tensioned beams. Assembly of the tendon stiffness into the concrete elements will depend on the bond interface between the steel and concrete, this bonding effect will be modeled using link elements; the stiffness of this link element used in the concrete-tendon interface will be the change in cohesion (between the grout or duct and the steel tendon) at the interface due to the relative slip between the concrete and the steel elements nodes. Loads (Distributed, Concentrated or Post-Tensioning) are applied directly into the concrete parent elements, and then from their resultant displacement the displacements and forces of all the steel tendon elements are obtained, this is done consecutively for all the post-tensioned tendons at every load increment. Four examples from different references and software programs are solved and compared with our results: (1) A simply reinforced cantilever plate. (2) A reinforced concrete beam, under the effect of a vertical concentrated load at mid-span. For this problem the force distribution along the steel reinforcement is obtained for two conditions, perfectly bonded and perfectly un-bonded, our results are compared with the ones obtained with the program SEGNID. (3) Consists of a continuous un-bonded post-tensioned beam with two spans, without stress losses on the tendon. The reactions at the supports and the concrete stress distribution at the location of the mid-support are obtained after the post-tensioning force is applied at both ends. (4) Consist on a un-bonded post-tensioned beam with stress losses on the tendons due to friction, wobbling and anchorage loss, under gradual loading and consecutive post-tensioning of two tendons, the results are compared with the ones reported using the program BEFE [5] developed at the University of Technology Graz, Austria. The results obtained using our program are very similar to the ones obtained with the other programs, including the more powerful curved embedded approach used by BEFE [5].
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000256, ucf:46227
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000256
-
-
Title
-
EFFICIENCY IMPROVEMENT TECHNIQUES FOR HIGH VOLTAGE CAPACITOR CHARGING METHODS.
-
Creator
-
Islas, Michael, Batarseh, Issa, University of Central Florida
-
Abstract / Description
-
The goal of this thesis is to design and fabricate a DC-to-DC converter for use in high-voltage capacitor charging applications. The primary objectives include increasing the efficiency and reducing the cost of traditional methods used for this application. Traditional methods were not designed specifically for high-voltage capacitor charging and were thus very primitive and exhibited lower efficiency. Prior methods made use of a high voltage power supply and a current limiting resistor or...
Show moreThe goal of this thesis is to design and fabricate a DC-to-DC converter for use in high-voltage capacitor charging applications. The primary objectives include increasing the efficiency and reducing the cost of traditional methods used for this application. Traditional methods were not designed specifically for high-voltage capacitor charging and were thus very primitive and exhibited lower efficiency. Prior methods made use of a high voltage power supply and a current limiting resistor or control scheme. The power supply would often only operate efficiently at a single voltage value and would thus function poorly over a range used in charging a capacitor. The resistor would also dissipate a fair amount of power, also limiting efficiency. This design makes use of a traditional flyback topology utilizing a controller developed specifically for this application, centering the design approach on the LT3750. Hence, taking full advantage of the efficiency improving control scheme it provides. Additionally, through the use of advanced techniques to eliminate noise and power losses, the efficiency may be significantly improved. A detailed theoretical analysis of the charger is also presented. The analysis will then be applied to optimization techniques to select ideal component values to meet specific design specifications. In this research, a specifically designed and developed prototype will be used to experimentally verify the theoretical work and optimization techniques.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002899, ucf:48025
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002899
-
-
Title
-
A Flexible Physics-Based Lifing Method for Metals Under Creep and Thermomechanical Fatigue.
-
Creator
-
Irmak, Firat, Gordon, Ali, Catbas, Necati, Raghavan, Seetha, University of Central Florida
-
Abstract / Description
-
This thesis focuses on the development of a flexible, physics-based life prediction approach for steels under complex conditions. Low alloy steels continue to be the materials of choice for large turbomachinery structures experiencing high temperatures for long durations. There has been significant advancement in the research of modern alloys; furthermore, these materials are continue to be utilized in boilers, heat exchanger tubes, and throttle valve bodies in both turbomachinery and...
Show moreThis thesis focuses on the development of a flexible, physics-based life prediction approach for steels under complex conditions. Low alloy steels continue to be the materials of choice for large turbomachinery structures experiencing high temperatures for long durations. There has been significant advancement in the research of modern alloys; furthermore, these materials are continue to be utilized in boilers, heat exchanger tubes, and throttle valve bodies in both turbomachinery and pressure-vessel/piping applications. The material 2.25Cr-1Mo is studied in the present work. The resistance of this alloy to deformation and damage under creep and/or fatigue at elevated temperatures make it appropriate for structures required to endure decades of service. Also, this material displays an excellent balance of ductility, corrosion resistance, and creep strength under aggressive operating conditions. Both creep-fatigue (CF) and thermomechanical fatigue (TMF) have been the limiting factor for most turbine components fabricated from various alloys; therefore, a life prediction approach is constructed for simulating fatigue life for cases where the material is experiencing mechanical loading with thermal cycling. Flexibility is imparted to the model through its ability to emphasize the dominant damage mechanism which may vary among alloys. A material database is developed to improve and compare the model with experimental data. This database contains low cycle fatigue (LCF), creep fatigue (CF), and thermomechanical fatigue (TMF) experiments. Parameters for the model are obtained with regression fits with the support of a broad experimental database. Additionally, the cumulative damage approach, better known as Miner's rule, is used in this study as the fundamental method to combine damage mechanisms. Life predictions are obtained by the usage of a non-interacting creep-plasticity constitutive model capable of simulating not only the temperature- and rate-dependence.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006885, ucf:51731
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006885
-
-
Title
-
Modeling and fault detection in DC side of Photovoltaic Arrays.
-
Creator
-
Akram, Mohd, Lotfifard, Saeed, Mikhael, Wasfy, Wu, Thomas, University of Central Florida
-
Abstract / Description
-
Fault detection in PV systems is a key factor in maintaining the integrity of any PV system. Faults in photovoltaic systems can cause irrevocable damages to the stability of the PV system and substantially decrease the power output generated from the array of PV modules. Among'st the various AC and DC faults in a PV system, the clearance of the AC side faults is achieved by conventional AC protection schemes,the DC side, however , there still exists certain faults which are difficult to...
Show moreFault detection in PV systems is a key factor in maintaining the integrity of any PV system. Faults in photovoltaic systems can cause irrevocable damages to the stability of the PV system and substantially decrease the power output generated from the array of PV modules. Among'st the various AC and DC faults in a PV system, the clearance of the AC side faults is achieved by conventional AC protection schemes,the DC side, however , there still exists certain faults which are difficult to detect and clear. This paper deals with the modeling, detection and classification of these types of DC faults. It is essential to be able to simulate the PV characteristics and faults through software. In this thesis a comprehensive literature survey of fault detection methods for DC side of a PV system is presented. The disparities in the techniques employed for fault detection are studied . A new method for modeling the PV systems information only from manufacturers datasheet using both the Normal Operating Cell temperature conditions (NOCT) and Standard Operating Test Conditions (STC) conditions is then proposed.The input parameters for modeling the system are Isc,Voc,Impp,Vmpp and the temperature coefficients of Isc and Voc for both STC and NOCT conditions. The model is able to analyze the variations of PV parameters such as ideality factor, Series resistance, thermal voltage and Band gap energy of the PV module with temperature. Finally a novel intelligent method based on Probabilistic Neural Network for fault detection and classification for PV farm with string inverter technology is proposed.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005293, ucf:50571
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005293
-
-
Title
-
SIGNAL PROCESSING OF AN ECG SIGNALIN THE PRESENCE OF A STRONG STATIC MAGNETIC FIELD.
-
Creator
-
Gupta, Aditya, Weeks, Arthur, University of Central Florida
-
Abstract / Description
-
This dissertation addresses the problem of elevation of the T wave of an electrocardiogram (ECG) signal in the magnetic resonance imaging (MRI). In the MRI, due to the strong static magnetic field the interaction of the blood flow with this strong magnetic field induces a voltage in the body. This voltage appears as a superimposition at the locus of the T wave of the ECG signal. This looses important information required by the doctors to interpret the ST segment of the ECG and detect...
Show moreThis dissertation addresses the problem of elevation of the T wave of an electrocardiogram (ECG) signal in the magnetic resonance imaging (MRI). In the MRI, due to the strong static magnetic field the interaction of the blood flow with this strong magnetic field induces a voltage in the body. This voltage appears as a superimposition at the locus of the T wave of the ECG signal. This looses important information required by the doctors to interpret the ST segment of the ECG and detect diseases such as myocardial infarction. This dissertation aims at finding a solution to the problem of elevation of the T wave of an ECG signal in the MRI. The first step is to simulate the entire situation and obtain the magnetic field dependent T wave elevation. This is achieved by building a model of the aorta and simulating the blood flow in it. This model is then subjected to a static magnetic field and the surface potential on the thorax is measured to observe the T wave elevation. The various parameters on which the T wave elevation is dependent are then analyzed. Different approaches are used to reduce this T wave elevation problem. The direct approach aims at computing the magnitude of T wave elevation using magneto-hydro-dynamic equations. The indirect approach uses digital signal processing tools like the least mean square adaptive filter to remove the T wave elevation and obtain artifact free ECG signal in the MRI. Excellent results are obtained from the simulation model. The model perfectly simulates the ECG signal in the MRI at all the 12 leads of the ECG. These results are compared with ECG signals measured in the MRI. A simulation package is developed in MATLAB based on the simulation model. This package is a graphical user interface allowing the user to change the strength of magnetic field, the radius of the aorta and the orientation of the aorta with respect to the heart and observe the ECG signals with the elevation at the 12 leads of the ECG. Also the artifacts introduced due to the magnetic field can be removed by the least mean square adaptive filter. The filter adapts the ECG signal in the MRI to the ECG signal of the patient outside the MRI. Before the adaptation, the heart rate of the ECG outside the MRI is matched to the ECG in the MRI by interpolation or decimation. The adaptive filter works excellently to remove the T wave artifacts. When the cardiac output of the patient changes, the simulation model is used along with the adaptive filter to obtain the artifact free ECG signal.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001857, ucf:47389
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001857
-
-
Title
-
A MECHANICS-BASED APPROACH FOR PUTT DISTANCE OPTIMIZATION.
-
Creator
-
Santiago-Martinez, Pascual, Gordon, Ali, University of Central Florida
-
Abstract / Description
-
Quantifying the core mechanics of putting is imperative to developing a reliable model that predicts post-collision ball behavior. A preliminary model for the stroking motion of putting and putter-ball collision is developed alongside experiments, establishing an empirical model that supports the theory. The goal of the present study is to develop a correlation between the backstroke of a putt, or the pre-impact translation of the putter, and the post-impact displacement of the golf ball....
Show moreQuantifying the core mechanics of putting is imperative to developing a reliable model that predicts post-collision ball behavior. A preliminary model for the stroking motion of putting and putter-ball collision is developed alongside experiments, establishing an empirical model that supports the theory. The goal of the present study is to develop a correlation between the backstroke of a putt, or the pre-impact translation of the putter, and the post-impact displacement of the golf ball. This correlation is subsequently utilized to generate an algorithm that predicts the two-dimensional ball trajectory based on putt displacement and putting surface texture by means of finite element analysis. In generating a model that accurately describes the putting behavior, the principles of classical mechanics were utilized. As a result, the putt displacement was completely described as a function of backstroke and some environmental parameters, such as: friction, slope of the green, and the elasticity of the putter-ball collision. In support of the preliminary model, experimental data were gathered from golfers of all levels. The collected data demonstrated a linear correlation between backstroke and putt distance, with the environmental parameters factoring in as a constant value; moreover, the data showed that experienced golfers tend to have a constant acceleration through ball impact. Combining the empirical results with the trajectory prediction algorithm will deliver an accurate predictor of ball behavior that can be easily implemented by golfers under most practical applications. Putt distance to backstroke ratios were developed under a variety of conditions
Show less
-
Date Issued
-
2015
-
Identifier
-
CFH0004764, ucf:45340
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0004764
-
-
Title
-
Development of a Chemical Kinetic Model for a Fluidized-bed Sewage Sludge Gasifier.
-
Creator
-
Champion, Wyatt, Cooper, Charles, Mackie, Kevin, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
As the need for both sustainable energy production and waste minimization increases, the gasification of biomass becomes an increasingly important process. What would otherwise be considered waste can now be used as fuel, and the benefits of volume reduction through gasification are seen in the increased lifespan of landfills. Fluidized-bed gasification is a particularly robust technology, and allows for the conversion of most types of waste biomass.Within a fluidized-bed gasifier, thermal...
Show moreAs the need for both sustainable energy production and waste minimization increases, the gasification of biomass becomes an increasingly important process. What would otherwise be considered waste can now be used as fuel, and the benefits of volume reduction through gasification are seen in the increased lifespan of landfills. Fluidized-bed gasification is a particularly robust technology, and allows for the conversion of most types of waste biomass.Within a fluidized-bed gasifier, thermal medium (sand) is heated to operating temperature (around 1350(&)deg;F) and begins to fluidize due to the rapid expansion of air entering the bottom of the reactor. This fluidization allows for excellent heat transfer and contact between gases and solids, and prevents localized (")hot spots(") within the gasifier, thereby reducing the occurrence of ash agglomeration within the gasifier. Solids enter the middle of the gasifier and are rapidly dried and devolatilized, and the products of this step are subsequently oxidized and then reduced in the remainder of the gasifier. A syngas composed mainly of N2, H2O, CO2, CO, CH4, and H2 exits the top of the gasifier.A computer model was developed to predict the syngas composition and flow rate, as well as ash composition and mass flow rate from a fluidized-bed gasifier. A review of the literature was performed to determine the most appropriate modeling approach. A chemical kinetic model was chosen, and developed in MATLAB using the Newton-Raphson method to solve sets of 18 simultaneous equations. These equations account for mass and energy balances throughout the gasifier. The chemical kinetic rate expressions for these reactions were sourced from the literature, and some values modified to better fit the predicted gas composition to literature data.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005089, ucf:50746
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005089