Current Search: Object Association (x)
View All Items
- Title
- OBJECT ASSOCIATION ACROSS MULTIPLE MOVING CAMERAS IN PLANAR SCENES.
- Creator
-
Sheikh, Yaser, Shah, Mubarak, University of Central Florida
- Abstract / Description
-
In this dissertation, we address the problem of object detection and object association across multiple cameras over large areas that are well modeled by planes. We present a unifying probabilistic framework that captures the underlying geometry of planar scenes, and present algorithms to estimate geometric relationships between different cameras, which are subsequently used for co-operative association of objects. We first present a local1 object detection scheme that has three fundamental...
Show moreIn this dissertation, we address the problem of object detection and object association across multiple cameras over large areas that are well modeled by planes. We present a unifying probabilistic framework that captures the underlying geometry of planar scenes, and present algorithms to estimate geometric relationships between different cameras, which are subsequently used for co-operative association of objects. We first present a local1 object detection scheme that has three fundamental innovations over existing approaches. First, the model of the intensities of image pixels as independent random variables is challenged and it is asserted that useful correlation exists in intensities of spatially proximal pixels. This correlation is exploited to sustain high levels of detection accuracy in the presence of dynamic scene behavior, nominal misalignments and motion due to parallax. By using a non-parametric density estimation method over a joint domain-range representation of image pixels, complex dependencies between the domain (location) and range (color) are directly modeled. We present a model of the background as a single probability density. Second, temporal persistence is introduced as a detection criterion. Unlike previous approaches to object detection that detect objects by building adaptive models of the background, the foreground is modeled to augment the detection of objects (without explicit tracking), since objects detected in the preceding frame contain substantial evidence for detection in the current frame. Finally, the background and foreground models are used competitively in a MAP-MRF decision framework, stressing spatial context as a condition of detecting interesting objects and the posterior function is maximized efficiently by finding the minimum cut of a capacitated graph. Experimental validation of the method is performed and presented on a diverse set of data. We then address the problem of associating objects across multiple cameras in planar scenes. Since cameras may be moving, there is a possibility of both spatial and temporal non-overlap in the fields of view of the camera. We first address the case where spatial and temporal overlap can be assumed. Since the cameras are moving and often widely separated, direct appearance-based or proximity-based constraints cannot be used. Instead, we exploit geometric constraints on the relationship between the motion of each object across cameras, to test multiple correspondence hypotheses, without assuming any prior calibration information. Here, there are three contributions. First, we present a statistically and geometrically meaningful means of evaluating a hypothesized correspondence between multiple objects in multiple cameras. Second, since multiple cameras exist, ensuring coherency in association, i.e. transitive closure is maintained between more than two cameras, is an essential requirement. To ensure such coherency we pose the problem of object associating across cameras as a k-dimensional matching and use an approximation to find the association. We show that, under appropriate conditions, re-entering objects can also be re-associated to their original labels. Third, we show that as a result of associating objects across the cameras, a concurrent visualization of multiple aerial video streams is possible. Results are shown on a number of real and controlled scenarios with multiple objects observed by multiple cameras, validating our qualitative models. Finally, we present a unifying framework for object association across multiple cameras and for estimating inter-camera homographies between (spatially and temporally) overlapping and non-overlapping cameras, whether they are moving or non-moving. By making use of explicit polynomial models for the kinematics of objects, we present algorithms to estimate inter-frame homographies. Under an appropriate measurement noise model, an EM algorithm is applied for the maximum likelihood estimation of the inter-camera homographies and kinematic parameters. Rather than fit curves locally (in each camera) and match them across views, we present an approach that simultaneously refines the estimates of inter-camera homographies and curve coefficients globally. We demonstrate the efficacy of the approach on a number of real sequences taken from aerial cameras, and report quantitative performance during simulations.
Show less - Date Issued
- 2006
- Identifier
- CFE0001045, ucf:46797
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001045
- Title
- Global Data Association for Multiple Pedestrian Tracking.
- Creator
-
Dehghan, Afshin, Shah, Mubarak, Qi, GuoJun, Bagci, Ulas, Zhang, Shaojie, Zheng, Qipeng, University of Central Florida
- Abstract / Description
-
Multi-object tracking is one of the fundamental problems in computer vision. Almost all multi-object tracking systems consist of two main components; detection and data association. In the detection step, object hypotheses are generated in each frame of a sequence. Later, detections that belong to the same target are linked together to form final trajectories. The latter step is called data association. There are several challenges that render this problem difficult, such as occlusion,...
Show moreMulti-object tracking is one of the fundamental problems in computer vision. Almost all multi-object tracking systems consist of two main components; detection and data association. In the detection step, object hypotheses are generated in each frame of a sequence. Later, detections that belong to the same target are linked together to form final trajectories. The latter step is called data association. There are several challenges that render this problem difficult, such as occlusion, background clutter and pose changes. This dissertation aims to address these challenges by tackling the data association component of tracking and contributes three novel methods for solving data association. Firstly, this dissertation will present a new framework for multi-target tracking that uses a novel data association technique using the Generalized Maximum Clique Problem (GMCP) formulation. The majority of current methods, such as bipartite matching, incorporate a limited temporal locality of the sequence into the data association problem. This makes these methods inherently prone to ID-switches and difficulties caused by long-term occlusions, a cluttered background and crowded scenes. On the other hand, our approach incorporates both motion and appearance in a global manner. Unlike limited temporal locality methods which incorporate a few frames into the data association problem, this method incorporates the whole temporal span and solves the data association problem for one object at a time. Generalized Minimum Clique Graph (GMCP) is used to solve the optimization problem of our data association method. The proposed method is supported by superior results on several benchmark sequences. GMCP leads us to a more accurate approach to multi-object tracking by considering all the pairwise relationships in a batch of frames; however, it has some limitations. Firstly, it finds target trajectories one-by-one, missing joint optimization. Secondly, for optimization we use a greedy solver, based on local neighborhood search, making our optimization prone to local minimas. Finally GMCP tracker is slow, which is a burden when dealing with time-sensitive applications. In order to address these problems, we propose a new graph theoretic problem, called Generalized Maximum Multi Clique Problem (GMMCP). GMMCP tracker has all the advantages of the GMCP tracker while addressing its limitations. A solution is presented to GMMCP where no simplification is assumed in problem formulation or problem optimization. GMMCP is NP hard but it can be formulated through a Binary-Integer Program where the solution to small- and medium-sized tracking problems can be found efficiently. To improve speed, Aggregated Dummy Nodes are used for modeling occlusions and miss detections. This also reduces the size of the input graph without using any heuristics. We show that using the speed-up method, our tracker lends itself to a real-time implementation, increasing its potential usefulness in many applications. In test against several tracking datasets, we show that the proposed method outperforms competitive methods. Thus far we have assumed that the number of people do not exceed a few dozens. However, this is not always the case. In many scenarios such as, marathon, political rallies or religious rites, the number of people in a frame may reach few hundreds or even few thousands. Tracking in high-density crowd sequences is a challenging problem due to several reasons. Human detection methods often fail to localize objects correctly in extremely crowded scenes. This limits the use of data association based tracking methods. Additionally, it is hard to extend existing multi-target tracking to track targets in highly-crowded scenes, because the large number of targets increases the computational complexity. Furthermore, the small apparent target size makes it challenging to extract features to discriminate targets from their surroundings. Finally, we present a tracker that addresses the above-mentioned problems. We formulate online crowd tracking as a Binary Quadratic Programing, where both detection and data association problems are solved together. Our formulation employs target's individual information in the form of appearance and motion as well as contextual cues in the form of neighborhood motion, spatial proximity and grouping constraints. Due to large number of targets, state-of-the-art commercial quadratic programing solvers fail to efficiently find the solution to the proposed optimization. In order to overcome the computational complexity of available solvers, we propose to use the most recent version of Modified Frank-Wolfe algorithms with SWAP steps. The proposed tracker can track hundreds of targets efficiently and improves state-of-the-art results by significant margin on high density crowd sequences.
Show less - Date Issued
- 2016
- Identifier
- CFE0006095, ucf:51201
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006095