Current Search: Optical Filters (x)
View All Items
- Title
- ON THE USE OF GAUSSIAN FILTER FUNCTIONS FOR ADAPTIVE OPTICS.
- Creator
-
Assad, Merfit, Andrews, Larry, University of Central Florida
- Abstract / Description
-
For adaptive optic systems, the use of aperture filter functions calculated using various Zernike modes can be useful in removing lower-order aberrations caused by atmospheric turbulence. Traditionally, these filter functions are calculated using the step function depicting a hard aperture that introduces integrals that are sometimes difficult to integrate and must be done numerically. The Gaussian method can be used in place of the conventional method for calculating the aperture filter...
Show moreFor adaptive optic systems, the use of aperture filter functions calculated using various Zernike modes can be useful in removing lower-order aberrations caused by atmospheric turbulence. Traditionally, these filter functions are calculated using the step function depicting a hard aperture that introduces integrals that are sometimes difficult to integrate and must be done numerically. The Gaussian method can be used in place of the conventional method for calculating the aperture filter functions. Evaluation of the Gaussian approximation for modeling a finite receiver aperture can be made by comparison of reduction in phase variance with results achieved using the conventional method. The validity of Gaussian approximation in this application is demonstrated by the consistency of results between the two methodologies. Comparison of reduction in scintillation by the two methodologies reveals several benefits derived from utilization of Gaussian approximation. The Gaussian approximation produces data that can be interpreted analytically. It further produces greater scintillation reduction. This paper will first examine the use of statistical models for predicting atmospheric turbulence and then the use of Zernike polynomials in adaptive optics. Next, this paper compares the reduction of phase variance and scintillation using the conventional method with the Gaussian approximation to evaluate the effectiveness of the new filter functions. The results of these comparisons are presented both as mathematical expressions and graphically.
Show less - Date Issued
- 2006
- Identifier
- CFE0001436, ucf:52885
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001436
- Title
- MICRO-OPTIC-SPECTRAL-SPATIAL-ELEMENTS (MOSSE).
- Creator
-
Mehta, Alok, Johnson, Eric, University of Central Florida
- Abstract / Description
-
Over a wide range of applications, optical systems have utilized conventional optics in order to provide the ability to engineer the properties of incident infra-red fields in terms of the transmitted field spectral, spatial, amplitude, phase, and polarization characteristics. These micro/nano-optical elements that provide specific optical functionality can be categorized into subcategories of refractive, diffractive, multi-layer thin film dichroics, 3-D photonic crystals, and polarization...
Show moreOver a wide range of applications, optical systems have utilized conventional optics in order to provide the ability to engineer the properties of incident infra-red fields in terms of the transmitted field spectral, spatial, amplitude, phase, and polarization characteristics. These micro/nano-optical elements that provide specific optical functionality can be categorized into subcategories of refractive, diffractive, multi-layer thin film dichroics, 3-D photonic crystals, and polarization gratings. The feasibility of fabrication, functionality, and level of integration which these elements can be used in an optical system differentiate which elements are more compatible with certain systems than others. With enabling technologies emerging allowing for a wider range of options when it comes to lithographic nano/micro-patterning, dielectric growth, and transfer etching capabilities, optical elements that combine functionalities of conventional optical elements can be realized. Within this one class of optical elements, it is possible to design and fabricate components capable of tailoring the spectral, spatial, amplitude, phase, and polarization characteristics of desired fields at different locations within an optical system. Optical transmission filters, polarization converting elements, and spectrally selective reflecting components have been investigated over the course of this dissertation and have been coined MOSSE,' which is an acronym for micro-optic-spectral-spatial-elements. Each component is developed and fabricated on a wafer scale where the thin film deposition, lithographic exposure, and transfer etching stages are decoupled from each other and performed in a sequential format. This facilitates the ability to spatially vary the optical characteristics of the different MOSSE structures across the surface of the wafer itself.
Show less - Date Issued
- 2007
- Identifier
- CFE0001962, ucf:47457
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001962
- Title
- DESIGN AND FABRICATION OF SPACE VARIANT MICRO OPTICAL ELEMENTS.
- Creator
-
Srinivasan, Pradeep, LiKamWa, Patrick, University of Central Florida
- Abstract / Description
-
A wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed...
Show moreA wide range of applications currently utilize conventional optical elements to individually transform the phase, polarization, and spectral transmission/reflection of the incident radiation to realize the desired system level function. The material properties and the feasibility of fabrication primarily impact the device and system functionality that can be realized. With the advancement in micro/nano patterning, growth, deposition and etching technology, devices with novel and multiplexed optical functionalities have become feasible. As a result, it has become possible to engineer the device response in the near and far field by controlling the phase, polarization or spectral response at the micro scale. One of the methods that have been explored to realize unique optical functionalities is by varying the structural properties of the device as a function of spatial location at the sub-micron scale across the device aperture. Spatially varying the structural parameters of these devices is analogous to local modifications of the material properties. In this dissertation, the optical response of interference transmission filters, guided mode resonance reflection filters, and diffraction gratings operated in Littrow condition with strategically introduced spatial variation have been investigated. Spatial variations in optical interference filters were used to demonstrate wavelength tunable spatial filters. The effect was realized by integrating diffractive and continuous phase functions on the defect layer of a one-dimensional photonic crystal structure. Guided mode resonance filters are free space optical filters that provide narrow spectral reflection by combining grating and waveguide dispersion effects. Frequency dependent spatial reflection profiles were achieved by spatially varying the grating fill fraction in designed contours. Diffraction gratings with space variant fill fractions operating in Littrow condition were used to provide graded feedback profiles to improve the beam quality and spatial brightness of broad area diode lasers. The fabrication of space variant structures is challenging and has been accomplished primarily by techniques such as ruling, electron beam writing or complex deposition methods. In order to vary the desired structural parameter in a designed manner, a novel technique for the fabrication of space variant structures using projection lithography with a fidelity that rivals any of the current technologies was also developed as a part of this work. The devices exhibit wavelength dependent beam shaping properties in addition to spatial and spectral filtering and have potential applications in advanced imaging systems, graded reflectivity laser mirrors, and engineered illumination. The design, modeling, microfabrication and experimental characterization of space variant micro optical elements with novel optical functionalities are presented.
Show less - Date Issued
- 2009
- Identifier
- CFE0002843, ucf:48066
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002843
- Title
- LIQUID CRYSTAL OPTICS FOR COMMUNICATIONS, SIGNAL PROCESSING AND 3-D MICROSCOPIC IMAGING.
- Creator
-
Khan, Sajjad, Riza, Nabeel, University of Central Florida
- Abstract / Description
-
This dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of...
Show moreThis dissertation proposes, studies and experimentally demonstrates novel liquid crystal (LC) optics to solve challenging problems in RF and photonic signal processing, freespace and fiber optic communications and microscopic imaging. These include free-space optical scanners for military and optical wireless applications, variable fiber-optic attenuators for optical communications, photonic control techniques for phased array antennas and radar, and 3-D microscopic imaging. At the heart of the applications demonstrated in this thesis are LC devices that are non-pixelated and can be controlled either electrically or optically. Instead of the typical pixel-by-pixel control as is custom in LC devices, the phase profile across the aperture of these novel LC devices is varied through the use of high impedance layers. Due to the presence of the high impedance layer, there forms a voltage gradient across the aperture of such a device which results in a phase gradient across the LC layer which in turn is accumulated by the optical beam traversing through this LC device. The geometry of the electrical contacts that are used to apply the external voltage will define the nature of the phase gradient present across the optical beam. In order to steer a laser beam in one angular dimension, straight line electrical contacts are used to form a one dimensional phase gradient while an annular electrical contact results in a circularly symmetric phase profile across the optical beam making it suitable for focusing the optical beam. The geometry of the electrical contacts alone is not sufficient to form the linear and the quadratic phase profiles that are required to either deflect or focus an optical beam. Clever use of the phase response of a typical nematic liquid crystal (NLC) is made such that the linear response region is used for the angular beam deflection while the high voltage quadratic response region is used for focusing the beam. Employing an NLC deflector, a device that uses the linear angular deflection, laser beam steering is demonstrated in two orthogonal dimensions whereas an NLC lens is used to address the third dimension to complete a three dimensional (3-D) scanner. Such an NLC deflector was then used in a variable optical attenuator (VOA), whereby a laser beam coupled between two identical single mode fibers (SMF) was mis-aligned away from the output fiber causing the intensity of the output coupled light to decrease as a function of the angular deflection. Since the angular deflection is electrically controlled, hence the VOA operation is fairly simple and repeatable. An extension of this VOA for wavelength tunable operation is also shown in this dissertation. A LC spatial light modulator (SLM) that uses a photo-sensitive high impedance electrode whose impedance can be varied by controlling the light intensity incident on it, is used in a control system for a phased array antenna. Phase is controlled on the Write side of the SLM by controlling the intensity of the Write laser beam which then is accessed by the Read beam from the opposite side of this reflective SLM. Thus the phase of the Read beam is varied by controlling the intensity of the Write beam. A variable fiber-optic delay line is demonstrated in the thesis which uses wavelength sensitive and wavelength insensitive optics to get both analog as well as digital delays. It uses a chirped fiber Bragg grating (FBG), and a 1xN optical switch to achieve multiple time delays. The switch can be implemented using the 3-D optical scanner mentioned earlier. A technique is presented for ultra-low loss laser communication that uses a combination of strong and weak thin lens optics. As opposed to conventional laser communication systems, the Gaussian laser beam is prevented from diverging at the receiving station by using a weak thin lens that places the transmitted beam waist mid-way between a symmetrical transmitter-receiver link design thus saving prime optical power. LC device technology forms an excellent basis to realize such a large aperture weak lens. Using a 1-D array of LC deflectors, a broadband optical add-drop filter (OADF) is proposed for dense wavelength division multiplexing (DWDM) applications. By binary control of the drive signal to the individual LC deflectors in the array, any optical channel can be selectively dropped and added. For demonstration purposes, microelectromechanical systems (MEMS) digital micromirrors have been used to implement the OADF. Several key systems issues such as insertion loss, polarization dependent loss, wavelength resolution and response time are analyzed in detail for comparison with the LC deflector approach. A no-moving-parts axial scanning confocal microscope (ASCM) system is designed and demonstrated using a combination of a large diameter LC lens and a classical microscope objective lens. By electrically controlling the 5 mm diameter LC lens, the 633 nm wavelength focal spot is moved continuously over a 48 Ým range with measured 3-dB axial resolution of 3.1 Ým using a 0.65 numerical aperture (NA) micro-objective lens. The ASCM is successfully used to image an Indium Phosphide twin square optical waveguide sample with a 10.2 Ým waveguide pitch and 2.3 Ým height and width. Using fine analog electrical control of the LC lens, a super-fine sub-wavelength axial resolution of 270 nm is demonstrated. The proposed ASCM can be useful in various precision three dimensional imaging and profiling applications.
Show less - Date Issued
- 2005
- Identifier
- CFE0000750, ucf:46596
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000750