View All Items
- Title
- SOLAR DRIVEN PHOTOELECTROCHEMICAL WATER SPLITTING FOR HYDROGEN GENERATION USING MULTIPLE BANDGAP TANDEM OF CIGS2 PV CELLS AND THIN FILM PHOTOCATALYST.
- Creator
-
Jahagirdar, Anant, Dhere, Neelkanth, University of Central Florida
- Abstract / Description
-
The main objective of this research was to develop efficient CuIn1-xGaxS2 (CIGS2)/CdS thin film solar cells for photoelectrochemical (PEC) water splitting to produce very pure hydrogen and oxygen. Efficiencies obtained using CIGS2 have been lower than those achieved using CuInSe2 and CuIn1-xGaxSe2. The basic limitation in the efficiencies is attributed to lower open circuit voltages with respect to the bandgap of the material. Presently, the main mechanism used to increase the open circuit...
Show moreThe main objective of this research was to develop efficient CuIn1-xGaxS2 (CIGS2)/CdS thin film solar cells for photoelectrochemical (PEC) water splitting to produce very pure hydrogen and oxygen. Efficiencies obtained using CIGS2 have been lower than those achieved using CuInSe2 and CuIn1-xGaxSe2. The basic limitation in the efficiencies is attributed to lower open circuit voltages with respect to the bandgap of the material. Presently, the main mechanism used to increase the open circuit voltage of these copper chalcopyrites (CuInSe2 and CuInS2) is the addition of gallium. However, addition of gallium has its own challenges. This research was intended to (i) elucidate the advantages and disadvantages of gallium addition, (ii) provide an alternative technique to the photovoltaic (PV) community to increase the open circuit voltage which is independent of gallium additions, (iii) develop highly efficient CIGS2/CdS thin film solar cells and (iv) provide an alternative material in the form of CIGS2/CdS thin film solar cells and an advanced technology in the form of a multiple bandgap tandem for PEC water splitting. High gallium content was achieved by the incorporation of a highly excess copper composition. Attempts to achieve high gallium content produced reasonable but not the best solar cell performance. Few solar cells developed on a molybdenum back contact and an ITO/MoS2 transparent conducting back contact showed a PV conversion efficiency of 7.93% and 5.97%, respectively. The solar cells developed on the ITO/MoS2 back contact form the first generation CIGS2/CdS thin film solar cells and 5.97% is the first ever reported efficiency on an ITO/MoS2 transparent back contact. Reasons for the moderate performance of these solar cells were attributed to significant porosity and remnants of unsulfurized CuGa alloy in the bulk of CIGS2. This was the first attempt to a detailed study of materials and device characteristics of CIGS2/CdS thin film solar cells prepared starting with a highly excess copper content CIGS2 layer. Next, excess copper composition of 1.4 (equivalent to gallium content, x = 0.3) was chosen with the aim to achieve the best efficiency. The open circuit voltage was enhanced by depositing an intermediate layer of intrinsic ZnO between CdS and ZnO:Al layers. The systematic study of requirements for such a layer and further optimization of its thickness to achieve a higher open circuit voltage (which is the greatest challenge of the scientific community) forms an important scientific contribution of this research. The PV parameters for CIGS2/CdS thin film solar cell as measured officially at the National Renewable Energy Laboratory were: open circuit voltage of 830.5 mV, short circuit current density of 21.88 mA/cm2, fill factor of 69.13% and photovoltaic conversion efficiency of 11.99% which sets a new world record for CIGS2 cells developed using sulfurization and the open circuit voltage of 830.5 mV has become the "Voc champion value". New PEC setups with the RuS2 and Ru0.99Fe0.01S2 photoanodes were developed. RuS2 and Ru0.99Fe0.01S2 photoanodes were more stable in the electrolyte and showed better I-V characteristics than the RuO2 anode earlier used. Using two CIGS2/CdS thin film solar cells, a PEC efficiency of 8.78% was achieved with a RuS2 anode and a platinum cathode. Results of this research constitute a significant advance towards achieving practical feasibility and industrially viability of the technology of PEC hydrogen generation by water splitting.
Show less - Date Issued
- 2005
- Identifier
- CFE0000871, ucf:46666
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000871
- Title
- Influence of Chitosan-Alginate Scaffold Stiffness on Bone Marrow Stromal Cell Differentiation.
- Creator
-
Arias Ponce, Isabel, Florczyk, Stephen, Fang, Jiyu, Khaled, Annette, Leon, Lorraine, University of Central Florida
- Abstract / Description
-
Tissue grafts are the gold standard for replacing large volume tissue defects. Yet, they present several risks, including infection, low functional outcomes, and reduced graft integrity. Tissue engineering (TE) combines cells and biomaterial scaffolds to foster tissue growth and remodeling. Bone marrow stromal cells (BMSCs) have been shown to respond to the stiffness of their microenvironment, resulting in differentiation into different lineages. 3D porous chitosan-alginate (CA) scaffolds...
Show moreTissue grafts are the gold standard for replacing large volume tissue defects. Yet, they present several risks, including infection, low functional outcomes, and reduced graft integrity. Tissue engineering (TE) combines cells and biomaterial scaffolds to foster tissue growth and remodeling. Bone marrow stromal cells (BMSCs) have been shown to respond to the stiffness of their microenvironment, resulting in differentiation into different lineages. 3D porous chitosan-alginate (CA) scaffolds have been previously demonstrated for bone TE with osteoblasts and BMSCs; however, only a single scaffold composition (4 wt%) was studied. Three CA scaffold compositions (2, 4, 6 wt% CA) were produced. Scanning electron microscopy images were obtained to determine average pore sizes for 2, 4, and 6 wt% CA scaffolds, which were 233, 208, and 146 ?m. Compression testing was performed on CA scaffolds in dry and wet conditions, where higher concentrations yielded higher stiffnesses ranging from 0.22 to 5.34 kPa and 21.1 to 47.3 Pa, respectively. Fourier transform infrared spectroscopy performed on the CA scaffolds confirmed polyelectrolyte complex formation for all compositions. Human BMSCs from three donors were seeded on CA scaffolds, cultured in growth media for 14 days, then cultured in adipogenic or osteogenic differentiation media for 28 days to promote differentiation. Our hypothesis was that scaffold stiffness would influence BMSC differentiation, with softer scaffolds promoting adipogenesis and stiffer scaffolds promoting osteogenesis. BMSCs formed multicellular spheroids in all CA scaffold concentrations, while the 2 wt% CA scaffolds had smaller spheroids compared to the 4 wt% and 6 wt% CA scaffolds. Osteogenic and adipogenic differentiation were evaluated with Alizarin Red and Oil Red O staining, respectively. While positive staining was observed in all scaffold compositions, more robust differentiation was expected, thereby disproving our hypothesis. The polysaccharide composition of the CA scaffolds likely contributed to the spheroid formation and limited differentiation.
Show less - Date Issued
- 2018
- Identifier
- CFE0007389, ucf:52061
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007389