Current Search: Photodynamic therapy (x)
View All Items
- Title
- METHOD FOR DETERMINATION OF SINGLET OXYGEN QUANTUM YIELDS FOR NEW FLUORENE-BASED PHOTOSENSITIZERS IN AQUEOUS MEDIA FOR THE ADVANCEMENT OF PHOTODYNAMIC THERAPY.
- Creator
-
Grabow, Wade William, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
Photodynamic therapy (PDT) has been investigated over the past three decades and is currently an approved therapeutic modality for skin cancer, the treatment of superficial bladder, early lung and advanced esophageal cancers, and age-related macular degeneration in a number of countries. In PDT, the absorption of light by a chromophore generates cytotoxic species such as reactive singlet oxygen, leading to irreversible destruction of the treated tissue. The measurement of the singlet oxygen...
Show morePhotodynamic therapy (PDT) has been investigated over the past three decades and is currently an approved therapeutic modality for skin cancer, the treatment of superficial bladder, early lung and advanced esophageal cancers, and age-related macular degeneration in a number of countries. In PDT, the absorption of light by a chromophore generates cytotoxic species such as reactive singlet oxygen, leading to irreversible destruction of the treated tissue. The measurement of the singlet oxygen quantum yield is an important determinant used to evaluate the efficiency of new photodynamic therapy agents developed in the laboratory, to screen potential photosensitizers in aqueous media.The singlet oxygen quantum yield is a quantitative measurement of the efficiency in which photosensitizers are able to use energy, in the form of light, to convert oxygen in the ground state to the reactive species singlet oxygen useful in photodynamic therapy. Singlet oxygen quantum yields of photosensitizers differ when measured in different solvents. The majority of the existing quantum yield values found in literature for various photosensitizers are documented with the sensitizers in organic solvents though values in aqueous media are more valuable for actual applications. Determination of accurate and precise quantum yield values in aqueous solution is a much more difficult problem than in organic media. Problems in aqueous solution arise primarily from the physicochemical properties of singlet oxygen in water. Singlet oxygen has a much shorter lifetime in water than it does in organic solvents, causing challenges with respect to quantitative detection of singlet oxygen.The ensuing pages are an attempt to explore the theory and document the procedures developed to provide the accurate measurement of singlet oxygen in aqueous media. Details of this experimental method and singlet oxygen quantum yield results of new compounds relative to established photosensitizers will be presented.
Show less - Date Issued
- 2004
- Identifier
- CFE0000029, ucf:46138
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000029
- Title
- Application of Two-Photon Absorbing Fluorene-Containing Compounds in Bioimaging and Photodyanimc Therapy.
- Creator
-
Yue, Xiling, Belfield, Kevin, Campiglia, Andres, Miles, Delbert, Frazer, Andrew, Cheng, Zixi, University of Central Florida
- Abstract / Description
-
Two-photon absorbing (2PA) materials has been widely studied for their highly localized excitation and nonlinear excitation efficiency. Application of 2PA materials includes fluorescence imaging, microfabrication, 3D data storage, photodynamic therapy, etc. Many materials have good 2PA photophysical properties, among which, the fluorenyl structure and its derivatives have attracted attention with their high 2PA cross-section and high fluorescence quantum yield.Herein, several compounds with...
Show moreTwo-photon absorbing (2PA) materials has been widely studied for their highly localized excitation and nonlinear excitation efficiency. Application of 2PA materials includes fluorescence imaging, microfabrication, 3D data storage, photodynamic therapy, etc. Many materials have good 2PA photophysical properties, among which, the fluorenyl structure and its derivatives have attracted attention with their high 2PA cross-section and high fluorescence quantum yield.Herein, several compounds with 2PA properties are discussed. All of these compounds contain one or two fluorenyl core units as part of the conjugated system. The aim of this dissertation is to discuss the application of these compounds according to their photophysical properties. In chapters 2 to 4, compounds were investigated for cell imaging and tissue imaging. In chapter 5, compounds were evaluated for photodynamic therapy effects on cancer cells. Chapters 2 and 3 detail compounds with quinolizinium and pyran as core structures, respectively. Fluorene was introduced into structures as substituents. Quinolizinium structures exhibited a large increase in fluorescence when binding with Bovine Serum Albumin (BSA). Further experiments in cell imaging demonstrated a fluorescence turn-on effect in cell membranes, indicating the possibility for these novel compounds to be promising membrane probes. Pyran structures were conjugated with arginylglycylaspartic acid peptide (RGD) to recognize integrin and introduced in cells and an animal model with tumors. Both probes showed specific targeting of tumor vasculature. Imaging reached penetration as deep as 350 ?m in solid tumors and exhibited good resolution. These results suggest the RGD-conjugated pyran structure should be a good candidate probe for live tissue imaging. Chapter 4 applied a fluorene core structure conjugated with RGD as well. Application of this fluorenyl probe compound is in wound healing animal models. Fluorescence was collected from vasculature and fibroblasts up to ? 1600 ?m within wound tissue in lesions made on the skin of mice. The resolution of images is also high enough to recognize cell types by immunohistochemical staining. This technology can be applied for reliable quantification and illustration of key biological processes taking place during tissue regeneration in the skin. Chapter 5 describes three fluorenyl core structures with photoacid generation properties. One of the structures showed excellent photo-induced toxicity. Cancer cells underwent necrotic cell death due to pH decrease in lysosomes and endosomes, suggesting a new mechanism for photodynamic therapy.
Show less - Date Issued
- 2014
- Identifier
- CFE0005565, ucf:50276
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005565
- Title
- SINGLET OXYGEN GENERATION USING NEW FLUORENE-BASED PHOTOSENSITIZERS UNDER ONE- AND TWO-PHOTON EXCITATION.
- Creator
-
Andrasik, Stephen, Belfield, Kevin, University of Central Florida
- Abstract / Description
-
Molecular oxygen in its lowest electronically excited state plays an important roll in the field of chemistry. This excited state is often referred to as singlet oxygen and can be generated in a photosensitized process under one- or two-photon excitation of a photosensitizer. It is particularly useful in the field of photodynamic cancer therapy (PDT) where singlet oxygen formation can be used to destroy cancerous tumors. The use of two-photon activated photosensitizers possesses great...
Show moreMolecular oxygen in its lowest electronically excited state plays an important roll in the field of chemistry. This excited state is often referred to as singlet oxygen and can be generated in a photosensitized process under one- or two-photon excitation of a photosensitizer. It is particularly useful in the field of photodynamic cancer therapy (PDT) where singlet oxygen formation can be used to destroy cancerous tumors. The use of two-photon activated photosensitizers possesses great potential in the field of PDT since near-IR light is used to activate the sensitizer, resulting in deeper penetration of light into biological tissue, less photo-bleaching of the sensitizer, and greatly improved resolution of excitation. The synthesis and photophysical characterization of new fluorene-based photosensitizers for efficient singlet oxygen production were investigated. The spectral properties for singlet oxygen production were measured at room temperature and 77 K. Two-photon absorption (2PA) cross-sections of the fluorene derivatives were measured by the open aperture Z-scan method. The quantum yields of singlet oxygen generation under one- and two-photon excitation (ΦΔ and 2PAΦΔ, respectively) were determined by the direct measurement of singlet oxygen luminescence at ≈ 1270 nm. The values of ΦΔ were independent of excitation wavelength, ranging from 0.6 - 0.9. The singlet oxygen quantum yields under two-photon excitation were 2PAΦΔ ≈ ½ΦΔ, indicating that the two processes exhibited the same mechanism of singlet oxygen production, independent of the mechanism of photon absorption.
Show less - Date Issued
- 2007
- Identifier
- CFE0001860, ucf:47411
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001860
- Title
- Novel Photodynamic Cancer Therapy Agent and Biochemical Phosphate Sensor Based on Nanomaterials.
- Creator
-
Fadhel, Alaa, Campiglia, Andres, Belfield, Kevin, Harper, James, Koculi, Eda, Bhattacharya, Aniket, University of Central Florida
- Abstract / Description
-
Biochemical research and clinical studies have revolutionized the field of medicine in both diagnosis and therapy. Researchers in the field of biochemistry and biotechnology are using nanomaterials in different applications to develop devices and materials that offer benefits to both patients and the health care industry. These include biochemical sensors, enzyme encapsulation, biomarkers, and drug delivery improvements for the treatment of cancer. This dissertation focuses on investigating...
Show moreBiochemical research and clinical studies have revolutionized the field of medicine in both diagnosis and therapy. Researchers in the field of biochemistry and biotechnology are using nanomaterials in different applications to develop devices and materials that offer benefits to both patients and the health care industry. These include biochemical sensors, enzyme encapsulation, biomarkers, and drug delivery improvements for the treatment of cancer. This dissertation focuses on investigating two biochemical aspects using nanomaterials; namely therapy and clinical diagnosis.For therapy purposes, Silica nanoparticles were used as drug delivery system to develop a new photodynamic cancer therapy agent photo-acid generator (PAG) that selectively induces necrotic cell death of cancer cells. The developed PAG is oxygen-independent and - when excited at specific wavelengths - drops the pH within the lysosome of cancer cells to produce apoptosis/necrosis. It was specifically designed for in vivo applications and conjugated with synthesized, highly monodispersed silica nanoparticles (Si NPs) functionalized with amine groups via amid links (SiN-NH-PAG). Additional Features include high photo-acid quantum yield, high one-photon (1PA) and two-photon absorption (2PA) with low fluorescence quantum yield. In vivo, confocal microscope studies with HCT-116 (Human colorectal carcinoma) cancer cells showed that photodynamic processes in the presence of PAG were completed under one- photon absorption (1PA) conditions. In these experiments, cells were imaged at 1 min intervals for a total of 4 hours with the aid of Differential Interference Contrast (DIC). Among the photodynamic therapy agents tested via cytotoxicity experiments with the MTS assay, (SiN-NH- PAG) showed the best efficiency to induce cell death. The increased effectiveness of the new agent is probably due to the large number of PAG groups present on the surface of Si NPs.iiLysosome colocalization indicates that PAGs are mainly built in lysosomes. The increase of acidic content inside the lysosome was demonstrated with the aid of the LysoSensor Green probe. The drop in the intralysosomal pH was approximately 0.3 units. This is a desirable outcome as most cells underwent necrosis at pH ? 4.4. For clinical diagnosis purposes, a biochemical sensor was developed for the analysis of phosphate ions in urine samples. Abnormal levels of inorganic phosphate in human urine samples are related to the development of certain types of cancers affecting several organs of the human body, including breast, pancreas, lung and thyroid. The new biochemical sensor is based on the fluorescence energy transfer between a lanthanide luminescent probe [Tb-EDTA]-1 and gold nanoparticles (Au NPs) capped with a Cetyltrimethylammonium bromide (CTAB) micelle. With this approach, it was possible to selectively determine inorganic phosphate (Pi) in urine samples at the micro-molar concentration level. Urine samples collected from healthy, non-smoking individuals showed no interference from concomitants usually found in human urine samples. The simplicity of analysis provides an approach well-suited for (")real-time(") monitoring of phosphate ions. Analysis time is made possible within approximately 10 min per sample.
Show less - Date Issued
- 2016
- Identifier
- CFE0006528, ucf:51384
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006528
- Title
- Photoactivatable Organic and Inorganic Nanoparticles in Cancer Therapeutics and Biosensing.
- Creator
-
Mathew, Mona, Gesquiere, Andre, Hickman, James, Ye, Jingdong, Campiglia, Andres, Schoenfeld, Winston, University of Central Florida
- Abstract / Description
-
In photodynamic therapy a photosensitizer drug is administered and is irradiated with light. Upon absorption of light the photosensitizer goes into its triplet state and transfers energy or an electron to oxygen to form reactive oxygen species (ROS). These ROS react with biomolecules in cells leading to cell damage and cell death. PDT has interested many researchers because of its non-invasiveness as compared to surgery, it leaves little to no scars, it is time and cost effective, it has...
Show moreIn photodynamic therapy a photosensitizer drug is administered and is irradiated with light. Upon absorption of light the photosensitizer goes into its triplet state and transfers energy or an electron to oxygen to form reactive oxygen species (ROS). These ROS react with biomolecules in cells leading to cell damage and cell death. PDT has interested many researchers because of its non-invasiveness as compared to surgery, it leaves little to no scars, it is time and cost effective, it has potential for targeted treatment, and can be repeated as needed. Different photosensitizers such as porphyrines, chlorophylls, and dyes have been used in PDT to treat various cancers, skin diseases, aging and sun-damaged skin. These second generation sensitizers have yielded reduced skin sensitivity and improved extinction coefficients (up to ~ 105 L mol-1 cm-1). While PDT based on small molecule photosensitizers has shown great promise, several problems remain unsolved. The main issues with current sensitizers are (i) hydrophobicity leading to aggregation in aqueous media resulting in reduced efficacy and potential toxicity, (ii) dark toxicity of photosensitizers, (iii) non-selectivity towards malignant tissue resulting in prolonged cutaneous photosensitivity and damage to healthy tissue, (iv) limited light absorption efficiency, and (v) a lack of understanding of where the photosensitizer ends up in the tissue. In this dissertation research program, these issues were addressed by the development of conducting polymer nanoparticles as a next generation of photosensitizers. This choice was motivated by the fact that conducting polymers have large extinction coefficients ((>) 107 L mol-1 cm-1), are able to undergo intersystem crossing to the triplet state, and have triplet energies that are close to that of oxygen. It was therefore hypothesized that such polymers could be effective at generating ROS due to the large excitation rate that can be generated. Conducting polymer nanoparticles (CPNPs) composed of the conducting polymer poly[2-methoxy-5-(2-ethylhexyl-oxy)-p-phenylenevinylene] (MEH-PPV) were fabricated and studied in-vitro for their potential in PDT application. Although not fully selective, the nanoparticles exhibited a strong bias to the cancer cells. The formation of ROS was proven in-vitro by staining of the cells with CellROX Green Reagent, after which PDT results were quantified by MTT assays. Cell mortality was observed to scale with nanoparticle dosage and light dosage. Based on these promising results the MEH-PPV nanoparticles were developed further to allow for surface functionalization, with the aim of targeting these NPs to cancer cell lines. For this work targeting of cancers that overexpress folate receptors (FR) were considered. The functionalized nanoparticles (FNPs) were studied in OVCAR3 (ovarian cancer cell line) as FR+, MIA PaCa2 (pancreatic cell line) as FR-, and A549 (lung cancer cell line) having marginal FR expression. Complete selectivity of the FNPs towards the FR+ cell line was found. Quantification of PDT results by MTS assays and flow cytometry show that PDT treatment was fully selective to the FR+ cell line (OVCAR3). No cell mortality was observed for the other cell lines studied here within experimental error. Finally, the issue of confirming and quantifying small molecule drug delivery to diseased tissue was tackled by developing quantum dot (Qdot) biosensors with the aim of achieving fluorescence reporting of intracellular small molecule/drug delivery. For fluorescence reporting prior expertise in control of the fluorescence state of Qdots was employed, where redox active ligands can place the Qdot in a quenched OFF state. Ligand attachment was accomplished by disulfide linker chemistry. This chemistry is reversible in the presence of sulfur reducing biomolecules, resulting in Qdots in a brightly fluorescent ON state. Glutathione (GSH) is such a biomolecule that is present in the intracellular environment. Experimental in-vitro data shows that this design was successfully implemented.
Show less - Date Issued
- 2014
- Identifier
- CFE0005839, ucf:50923
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005839