Current Search: Photolithography (x)
View All Items
- Title
- A NEW HYBRID DIFFRACTIVE PHOTO-MASK TECHNOLOGY.
- Creator
-
Sung, Jin Won, Johnson, Eric, University of Central Florida
- Abstract / Description
-
In the field of photolithography for micro-chip manufacturing, the photo-mask is used to print desired patterns on a proper photo-resist on wafer. The most common type of photo-mask is binary amplitude mask made an opaque layer of chrome. The principle and potential application of hybrid photo-mask with diffractive phase element and binary amplitude is presented in this dissertation paper from both numerical modeling and experimental research. The first important application is the...
Show moreIn the field of photolithography for micro-chip manufacturing, the photo-mask is used to print desired patterns on a proper photo-resist on wafer. The most common type of photo-mask is binary amplitude mask made an opaque layer of chrome. The principle and potential application of hybrid photo-mask with diffractive phase element and binary amplitude is presented in this dissertation paper from both numerical modeling and experimental research. The first important application is the characterization of aberration in the stepper system using hybrid diffractive photo-mask. By utilizing multiple diffractive illumination conditions, it is possible to characterize Zernike wave front aberration coefficients up to any desired order. And, the second application is the use of binary phase grating mask for analog micro-optics fabrication. This approach of using binary phase grating mask for fabricating analog micro-optics turned out to be a very effective alternative for gray-scale mask technology. Since this is a pure phase only mask, it doesn't cause any scattered noise light like half-tone mask and it results in smooth desired resist profile. The benefits and limitations of hybrid diffractive photo-mask approach for both applications are discussed.
Show less - Date Issued
- 2005
- Identifier
- CFE0000350, ucf:46296
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000350
- Title
- PROCESS DEVELOPMENT FOR THE FABRICATION OF MESOSCALE ELECTROSTATIC VALVE ASSEMBLY.
- Creator
-
Dhru, Shailini, Sundaram, Kalpathy, University of Central Florida
- Abstract / Description
-
This study concentrates on two of the main processes involved in the fabrication of electrostatic valve assembly, thick resist photolithography and wet chemical etching of a polyamide film. The electrostatic valve has different orifice diameters of 25, 50, 75 and 100 μm. These orifice holes are to be etched in the silicon wafer with deep reactive ion etching. The photolithography process is developed to build a mask of 15 μm thick resist pattern on silicon wafer. This photo layer...
Show moreThis study concentrates on two of the main processes involved in the fabrication of electrostatic valve assembly, thick resist photolithography and wet chemical etching of a polyamide film. The electrostatic valve has different orifice diameters of 25, 50, 75 and 100 μm. These orifice holes are to be etched in the silicon wafer with deep reactive ion etching. The photolithography process is developed to build a mask of 15 μm thick resist pattern on silicon wafer. This photo layer acts as a mask for deep reactive ion etching. Wet chemical etching process is developed to etch kapton polyamide film. This etched film is used as a stand off, gap between two electrodes of the electrostatic valve assembly. The criterion is to develop the processed using standard industry tools. Pre post etch effects, such as, surface roughness, etching pattern, critical dimensions on the samples are measured with Veeco profilometer.
Show less - Date Issued
- 2007
- Identifier
- CFE0001828, ucf:47347
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001828
- Title
- APPLICATION OF POLYELECTROLYTE MULTILAYERS FOR PHOTOLITHOGRAPHIC PATTERNING OF DIVERSE MAMMALIAN CELL TYPES IN SERUM FREE MEDIUM.
- Creator
-
Dhir, Vipra, Cho, Hyoung Jin, University of Central Florida
- Abstract / Description
-
Integration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer-by-layer self-assembly technique and photolithography offers a simple, versatile and silicon compatible approach that overcomes chemical surface patterning...
Show moreIntegration of living cells with novel microdevices requires the development of innovative technologies for manipulating cells. Chemical surface patterning has been proven as an effective method to control the attachment and growth of diverse cell populations. Patterning polyelectrolyte multilayers through the combination of layer-by-layer self-assembly technique and photolithography offers a simple, versatile and silicon compatible approach that overcomes chemical surface patterning limitations, such as short-term stability and low protein adsorption resistance. In this study, direct photolithographic patterning of PAA/PAAm and PAA/PAH polyelectrolyte multilayers was developed to pattern mammalian neuronal, skeletal and cardiac muscle cells. For all studied cell types, PAA/PAAm multilayers behaved as a negative surface, completely preventing cell attachment. In contrast, PAA/PAH multilayers have shown a cell-selective behavior, promoting the attachment and growth of neuronal cells (embryonic rat hippocampal and NG108-15 cells) to a greater extent, while providing a little attachment for neonatal rat cardiac and skeletal muscle cells (C2C12 cell line). PAA/PAAm multilayer cellular patterns have also shown a remarkable protein adsorption resistance. Protein adsorption protocols commonly used for surface treatment in cell culture did not compromise the cell attachment inhibiting feature of the PAA/PAAm multilayer patterns. The combination of polyelectrolyte multilayer patterns with different adsorbed proteins could expand the applicability of this technology to cell types that require specific proteins either on the surface or in the medium for attachment or differentiation, and could not be patterned using the traditional methods.
Show less - Date Issued
- 2008
- Identifier
- CFE0002357, ucf:47783
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002357
- Title
- APPLICATION OF ALKYLSILANE SELF-ASSEMBLED MONOLAYERS FOR CELLPATTERNING AND DEVELOPMENT OF BIOLOCIAL MICROELECTROMECHANICALSYSTEMS.
- Creator
-
Wilson, Kerry, Hickman, James, University of Central Florida
- Abstract / Description
-
Advances in microfabrication and surface chemistry techniques have provided a new paradigm for the creation of in vitro systems for studying problems in biology and medicine in ways that were previously not practical. The ability to create devices with micro- to nano-scale dimensions provides the opportunity to non-invasively interrogate and monitor biological cells and tissue in large arrays and in a high-throughput manner. These systems hold the potential to, in time, revolutionize the way...
Show moreAdvances in microfabrication and surface chemistry techniques have provided a new paradigm for the creation of in vitro systems for studying problems in biology and medicine in ways that were previously not practical. The ability to create devices with micro- to nano-scale dimensions provides the opportunity to non-invasively interrogate and monitor biological cells and tissue in large arrays and in a high-throughput manner. These systems hold the potential to, in time, revolutionize the way problems in biology and medicine are studied in the form of point-of-care devices, lab-on-chip devices, and biological microelectromechanical systems (BioMEMS). With new in vitro models, it will be possible to reduce the overall cost of medical and biological research by performing high-throughput experiments while maintaining control over a wide variety of experimental variables. A critical aspect of developing these sorts of systems, however, is controlling the device/tissue interface. The surface chemistry of cell-biomaterial and protein-biomaterial interactions is critical for long-term efficacy and function of such devices. The work presented here is focused on the application of surface and analytical chemistry techniques for better understanding the interface of biological elements with silica substrates and the development a novel Bio-MEMS device for studying muscle and neuromuscular biology. A novel surface patterning technique based on the use of a polyethylene glycol (PEG) silane self-assembled monolayer (SAM) as a cytophobic surface and the amine-terminated silane diethyeletriamine (DETA) as a cytophilic surface was developed for patterning a variety of cell types (e.g. skeletal muscle, and neural cells) over long periods of time (over 40 days) with high fidelity to the patterns. This method was then used to pattern embryonic rat skeletal muscle and motor neurons onto microfabricated silicon cantilevers creating a novel biological microelectromechanical system (BioMEMS) for studying muscle and the neuromuscular junction. This device was then used to study the effect of exogenously applied substances such as growth factors and toxins. Furthermore, a whispering-gallery mode (WGM) biosensor was developed for measuring the adsorption of various proteins onto glass microspheres coated with selected silane SAMS commonly used in BioMEMS system. With this biosensor it was possible to measure the kinetics of protein adsorption onto alkylsilane SAMS, in a real-time and label-free manner.
Show less - Date Issued
- 2009
- Identifier
- CFE0002631, ucf:48210
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002631