Current Search: Response Time (x)
View All Items
- Title
- STUDIES OF LIQUID CRYSTAL RESPONSE TIME.
- Creator
-
Wang, Haiying, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
In this dissertation, the response time issue of the liquid crystal (LC) devices is investigated in meeting the challenges for display and photonic applications. The correlation between the LC director response time and the optical response time is derived theoretically and confirmed experimentally. A major contribution of this thesis is that, based on the small angle approximation, we derive rigorous analytical solutions for correlating the LC director response time to its consequent optical...
Show moreIn this dissertation, the response time issue of the liquid crystal (LC) devices is investigated in meeting the challenges for display and photonic applications. The correlation between the LC director response time and the optical response time is derived theoretically and confirmed experimentally. A major contribution of this thesis is that, based on the small angle approximation, we derive rigorous analytical solutions for correlating the LC director response time to its consequent optical response times (both rise and decay) of a vertical-aligned nematic LC cell. This work successfully fills the gap in the literature of LCD switching dynamics. An important effect related to response time, backflow is analyzed using a homogeneous LC cell in an infrared wavelength. The Leslie viscosity coefficients can hardly be found in the literature. A new effective approach to estimate the Leslie coefficients of LC mixtures based on MBBA data is proposed in this dissertation. Using this method, the Leslie coefficients of the LC material under study can be extracted based on its order parameters. The simulation results agree with the experimental data very well. This method provides a useful tool for analyzing the dynamic response including backflow. Cell gap is an important factor affecting the LC response time. Usually a thinner cell gap is chosen to achieve faster response time, since normally both rise and decay times are known to be proportional to d2. However, they are valid only in the region. In the large voltage region where , the optical decay time is independent of d. In this thesis, we find that between these two extremes the response time is basically linearly proportional to d. Our analytical derivation is validated by experimental results. Therefore, in the whole voltage region, the physical picture of the optical response time as a function of the cell gap is completed. This analysis is useful for understanding the grayscale switching behaviors of the LC phase modulators. In conclusion, this dissertation has solved some important issues related to LC optical response time and supplied valuable tools for scientists and engineers to numerically analyze the LC dynamics.
Show less - Date Issued
- 2005
- Identifier
- CFE0000796, ucf:46558
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000796
- Title
- FAST RESPONSE DUAL FREQUENCYLIQUID CRYSTAL MATERIALS.
- Creator
-
song, qiong, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
Dual frequency liquid crystal (DFLC) exhibits a positive dielectric anisotropy at low frequencies and negative dielectric anisotropy at high frequencies. The frequency where dielectric anisotropy is zero is called crossover frequency. DFLC can achieve fast rise time and fast decay time with the assistance of applied voltage. However, one drawback of DFLC is that it has dielectric heating effect when driven at a high frequency. Thus, the first part of this dissertation is to develop low...
Show moreDual frequency liquid crystal (DFLC) exhibits a positive dielectric anisotropy at low frequencies and negative dielectric anisotropy at high frequencies. The frequency where dielectric anisotropy is zero is called crossover frequency. DFLC can achieve fast rise time and fast decay time with the assistance of applied voltage. However, one drawback of DFLC is that it has dielectric heating effect when driven at a high frequency. Thus, the first part of this dissertation is to develop low crossover frequency DFLC materials. The dielectric relaxation and physical properties of some single- and double-ester compounds were investigated. Experimental results indicate that the double-ester compound exhibits a ~ 3 X lower dielectric relaxation frequencies and larger dielectric anisotropy than the single ester, but its viscosity is also higher. More generally, ten groups of dual frequency liquid crystals were compared in terms of dielectric relaxation frequency and dielectric anisotropy. The dielectric relaxation theory was discussed at last. To realize fast response time, high birefringence and low viscosity LC are required. From these two aspects, firstly four new high birefringence laterally difluoro phenyl tolane liquid crystals with a negative dielectric anisotropy were studied. These materials are used to enhance the birefringence of DFLC. They have a fairly small heat fusion enthalpy (~3000 cal/mol) which improves their solubility in a host. We dope 10 wt% of each compound into a commercial negative mixture N1 and measured their birefringence, viscoelastic constant and figure of merit. Birefringence varies very little among homologues while viscoelastic constant increases as alkyl chain length increases. Secondly, we studied the effects of six diluters for lowering the viscosity while stabilizing the vertical alignment (VA) of the laterally difluoro terphenyl host mixture at elevated temperatures. The pros and cons of each diluter are analyzed. These lateral difluoro terphenyls exhibit a high birefringence, fairly low viscosity, and modest dielectric anisotropy, but their molecular alignment in a VA cell is gradually deteriorated at elevated temperatures as their concentration increases. As a result, the device contrast ratio is decreased noticeably due to the light leakage through the crossed polarizers. Finally, liquid crystal doped with metallic nanoparticles, such as Pd, Ag, or Ag-Pd, which are protected with ligand molecules, such as nematic liquid crystal were studied. The metal nanoparticles doped LC exhibit a frequency modulation (FM) electro-optical (EO) response in the millisecond to submillisecond range together with the ordinary root-mean-square voltage response.
Show less - Date Issued
- 2010
- Identifier
- CFE0003152, ucf:48593
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003152
- Title
- AVL AND RESPONSE TIME REDUCTION: IMAGE AND REALITY.
- Creator
-
Russo, Charles, Surette, Raymond, University of Central Florida
- Abstract / Description
-
Automatic vehicle locator (AVL) systems, utilizing military's global positioning system, may impact response time to law enforcement calls for service. In order to evaluate the impacts of AVL on response time to calls for service at the Altamonte Springs Police Department (ASPD), computer aided dispatch (CAD) data from years 1999 to 2003 were analyzed. The analysis of each of the data sets consisted of an initial sequence chart, an analysis of variance (ANOVA), a means plot and a linear...
Show moreAutomatic vehicle locator (AVL) systems, utilizing military's global positioning system, may impact response time to law enforcement calls for service. In order to evaluate the impacts of AVL on response time to calls for service at the Altamonte Springs Police Department (ASPD), computer aided dispatch (CAD) data from years 1999 to 2003 were analyzed. The analysis of each of the data sets consisted of an initial sequence chart, an analysis of variance (ANOVA), a means plot and a linear regression. Interviews of ASPD personnel were conducted to understand user perceptions of AVL. Based on the ANOVA results, trends indicate that weekly response time was significantly lower during the AVL partial implementation period than during the pre or post AVL stages across all categories of data analyzed. Based on the regression results, trends indicate that the overall impact of AVL on response time for all categories analyzed is flat and show AVL as having no overall impact on response time across all calls for service analyzed. An exception to this is the findings related to Priority 3 calls for service; however this exception can be attributed to performance during the pre AVL implementation stage. These results do not suggest a capability for AVL to reduce response time to calls for service in a meaningful comprehensive way. Thus, the study's hypotheses are not supported.
Show less - Date Issued
- 2006
- Identifier
- CFE0001417, ucf:47046
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001417
- Title
- EFFECT OF REPEATED FUNCTION ALLOCATION AND RELIABILITY ON AUTOMATION INDUCED MONITORING INEFFICIENCY.
- Creator
-
Jones, Lauriann, Mouloua, Mustapha, University of Central Florida
- Abstract / Description
-
The purpose of this study is to extend previous findings of Mouloua, Parasuraman, and Molloy (1993), Parasuraman, Mouloua, and Molloy (1996), Hilburn, Parasuraman, and Mouloua (1996), and Oakley, Mouloua, and Hancock (2003) by: 1) examining the effect of repeated adaptive function allocation to manual control of minimal length (5 minutes) to reduce of human error and minimize workload; 2) explore the placement or timing of adaptive function allocation intervals (approximately 20 minutes of...
Show moreThe purpose of this study is to extend previous findings of Mouloua, Parasuraman, and Molloy (1993), Parasuraman, Mouloua, and Molloy (1996), Hilburn, Parasuraman, and Mouloua (1996), and Oakley, Mouloua, and Hancock (2003) by: 1) examining the effect of repeated adaptive function allocation to manual control of minimal length (5 minutes) to reduce of human error and minimize workload; 2) explore the placement or timing of adaptive function allocation intervals (approximately 20 minutes of automation control to reduce the human operators' monitoring decrement between intervals, maintain adaptive recovery performance levels, and improve response times); 3) examine different levels of automation reliability (30%, 60%, and 90% reliable); 4) explore factors that may be manipulated to reduce automation-induced monitoring inefficiency, increase detection of automation malfunctions, improve situation awareness, reduce response/reaction times, and reduce workload in a simulated complex aviation system. The study was a 2 (non-adaptive control vs. adaptive group) x 3 (30%, 60%, and 90% automation reliability condition) x 4 (repeated 25 minute session) mixed factorial design. Fifty-four undergraduate participants' (i.e., 27 participants per group; 9 participants per condition; at least 18 yrs. of age) percentage of detected malfunctions, response times, and subjective workload were gathered from the Multi-Attribute Task Battery and the NASA TLX. Results indicated a significant improvement in detection of malfunctions and response times during adaptive-function allocation to manual control but without adaptive recovery. There was a significant effect for workload found between baseline measures and experimental sessions by group in the first session but not across experimental sessions. Theoretical and practical implications, limitations and future research are discussed.
Show less - Date Issued
- 2007
- Identifier
- CFE0001874, ucf:47387
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001874
- Title
- ANCHORING ENERGY AND PRETILT ANGLE EFFECTS ON LIQUID CRYSTAL RESPONSE TIME.
- Creator
-
Nie, Xiangyi, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
This dissertation covers some important topics on the liquid crystal-substrate surface effects, including theoretical derivations and confirming experimental results. The research work is expected to make important impacts on liquid crystal device designs and to open new doors for further research along these topics. In this dissertation, a novel high-electric-field technique is developed to characterize the anchoring energy of vertically-aligned liquid crystal cells. Both theoretical...
Show moreThis dissertation covers some important topics on the liquid crystal-substrate surface effects, including theoretical derivations and confirming experimental results. The research work is expected to make important impacts on liquid crystal device designs and to open new doors for further research along these topics. In this dissertation, a novel high-electric-field technique is developed to characterize the anchoring energy of vertically-aligned liquid crystal cells. Both theoretical analyses and confirming experimental results are presented. Vertically-aligned liquid crystal cells with buffed polyimide alignment layers are used to validate the measurement techniques. Based on the voltage-dependent transmittance of the liquid crystal cells, a linear fitting can be obtained, which leads to a precise determination of the anchoring energy. If some specific liquid crystal material parameters are known, then the traditional cell capacitance measurements can be avoided. Anchoring energy and cell gap effects on liquid crystal response time is theoretically analyzed and experimentally investigated. A novel theory on the liquid crystal dynamics is developed. In this part, two different theoretical approaches are discussed: one is surface dynamic equation method and the other is effective cell gap method. These two different approaches lead to consistent results, which are also confirmed by our experimental results. This work opens a new door for LCD industry to optimize liquid crystal response time, and it is especially critical for liquid crystal cells with thin cell gap, which is a promising approach for fast response time liquid crystal display. Pretilt angle effects on liquid crystal dynamics are analyzed theoretically and validated experimentally. Analytical expressions are derived to describe liquid crystal response time under nonzero pretilt angle conditions. The theoretical analysis is confirmed experimentally using vertically-aligned liquid crystal cells. These results quantitatively correlate pretilt angles with liquid crystal response time, which is important for optimizing liquid crystal response time.
Show less - Date Issued
- 2007
- Identifier
- CFE0001927, ucf:47440
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001927
- Title
- The Bridging Technique: Crossing Over the Modality Shifting Effect.
- Creator
-
Alicia, Thomas, Mouloua, Mustapha, Hancock, Peter, Szalma, James, Pharmer, James, University of Central Florida
- Abstract / Description
-
Operator responsiveness to critical alarm/alert display systems must rely on faster and safer behavioral responses in order to ensure mission success in complex environments such as the operator station of an Unmanned Aerial System (UAS). An important design consideration for effective UAS interfaces is how to map these critical alarm/alert display systems to an appropriate sensory modality (e.g., visual or auditory) (Sarter, 2006). For example, if an alarm is presented during a mission in a...
Show moreOperator responsiveness to critical alarm/alert display systems must rely on faster and safer behavioral responses in order to ensure mission success in complex environments such as the operator station of an Unmanned Aerial System (UAS). An important design consideration for effective UAS interfaces is how to map these critical alarm/alert display systems to an appropriate sensory modality (e.g., visual or auditory) (Sarter, 2006). For example, if an alarm is presented during a mission in a modality already highly taxed or overloaded, this can result in increased response time (RT), thereby decreasing operator performance (Wickens, 1976). To overcome this problem, system designers may allow the switching of the alarm display from a highly-taxed to a less-taxed modality (Stanney et al., 2004). However, this modality switch may produce a deleterious effect known as the Modality Shifting Effect (MSE) that erodes the expected performance gain (Spence (&) Driver, 1997). The goal of this research was to empirically examine a technique called bridging which allows the transitioning of a cautionary alarm display from one modality to another while simultaneously counteracting the Modality Shifting Effect.Sixty-four participants were required to complete either a challenging visual or auditory task using a computer-based UAS simulation environment while responding to both visual and auditory alarms. An approach was selected which utilized two 1 (task modality) x 2 (switching technique) ANCOVAs and one 2 (modality) x 2 (technique) ANCOVA, using baseline auditory and visual RT as covariates, to examine differences in alarm response times when the alert modality was changed abruptly or with the bridging technique from a highly loaded sensory channel to an underloaded sensory channel. It was hypothesized that the bridging technique condition would show faster response times for a new unexpected modality versus the abrupt switching condition. The results indicated only a marginal decrease in response times for the auditory alerts and a larger yet not statistically significant effect for the visual alerts; results were also not statistically significant for the analysis collapsed across modality. Findings suggest that there may be some benefit of the bridging technique on performance of alarm responsiveness, but further research is still needed before suggesting generalizable design guidelines for switching modalities which can apply in a variety of complex human-machine systems.
Show less - Date Issued
- 2015
- Identifier
- CFE0005568, ucf:50283
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005568
- Title
- APPRECIATING THE GOLDEN HOUR: A COMPARATIVE INTERDISCIPLINARY STUDY.
- Creator
-
Tachon, Taylor, Heglund, Stephen, Covelli, Maureen, University of Central Florida
- Abstract / Description
-
Within the health care, many medical professionals know about the critical time restraints for provisions of care within their discipline, but do not know the term "The Golden Hour". The Golden Hour is a term indicating the universal time restraint found within every area of health care and more specifically, every area of nursing. The term and concept represented by it should be recognized to better the outcomes of our patients. Although the Golden Hour typically indicates a 60-minute period...
Show moreWithin the health care, many medical professionals know about the critical time restraints for provisions of care within their discipline, but do not know the term "The Golden Hour". The Golden Hour is a term indicating the universal time restraint found within every area of health care and more specifically, every area of nursing. The term and concept represented by it should be recognized to better the outcomes of our patients. Although the Golden Hour typically indicates a 60-minute period of time, various settings recognize shorter and longer periods during which specific actions must be taken to assure positive patient outcomes. To meet this aim, this thesis will review studies related to outcomes as associated with time critical interventions that could be categorized by "The Golden Hour". To meet the goal, a search of CINAHL, MEDLINE, PsychINFO, and ScienceDirect databases was conducted. Findings of the search revealed that while the term is not widely used, the concept of time sensitive care is found in many areas of Health Care and, specifically, within multiple sub-disciplines of nursing.
Show less - Date Issued
- 2018
- Identifier
- CFH2000314, ucf:45846
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000314
- Title
- THE USE OF THE UCF DRIVING SIMIULATOR TO TEST THE CONTRIBUTION OF LARGER SIZE VEHICLES (LSVS) IN REAR-END COLLISIONS AND RED LIGHT RUNNING ON INTERSECTIONS.
- Creator
-
Harb, Rami, Radwan, Essam, University of Central Florida
- Abstract / Description
-
Driving safety has been an issue of great concern in the United States throughout the years. According to the National Center for Statistics and Analysis (NCSA), in 2003 alone, there were 6,267,000 crashes in the U.S. from which 1,915,000 were injury crashes, including 38,764 fatal crashes and 43,220 human casualties. The U.S. Department of Transportation spends millions of dollars every year on research that aims to improve roadway safety and decrease the number of traffic collisions. In...
Show moreDriving safety has been an issue of great concern in the United States throughout the years. According to the National Center for Statistics and Analysis (NCSA), in 2003 alone, there were 6,267,000 crashes in the U.S. from which 1,915,000 were injury crashes, including 38,764 fatal crashes and 43,220 human casualties. The U.S. Department of Transportation spends millions of dollars every year on research that aims to improve roadway safety and decrease the number of traffic collisions. In spring 2002, the Center for Advanced Traffic System Simulation (CATSS), at the University of Central Florida, acquired a sophisticated reconfigurable driving simulator. This simulator, which consists of a late model truck cab, or passenger vehicle cab, mounted on a motion base capable of operation with six degrees of freedom, is a great tool for traffic studies. Two applications of the simulator are to study the contribution of Light Truck Vehicles (LTVs) to potential rear-end collisions, the most common type of crashes, which account for about a third of the U.S. traffic crashes, and the involvement of Larger Size Vehicles (LSVs) in red light running. LTVs can obstruct horizontal visibility for the following car driver and has been a major issue, especially at unsignalized intersections. The sudden stop of an LTV, in the shadow of the blindness of the succeeding car driver, may deprive the following vehicle of a sufficient response time, leading to high probability of a rear-end collision. As for LSVs, they can obstruct the vertical visibility of the traffic light for the succeeding car driver on signalized intersection producing a potential red light running for the latter. Two sub-scenarios were developed in the UCF driving simulator for each the vertical and horizontal visibility blockage scenarios. The first sub-scenario is the base sub-scenario for both scenarios, where the simulator car follows a passenger car, and the second sub-scenario is the test sub-scenario, where the simulator car follows an LTV for the horizontal visibility blockage scenario and an LSV for the vertical visibility blockage scenario. A suggested solution for the vertical visibility blockage of the traffic light problem that consisted of adding a traffic signal pole on the right side of the road was also designed in the driving simulator. The results showed that LTVs produce more rear-end collisions at unsignalized intersections due to the horizontal visibility blockage and following car drivers' behavior. The results also showed that LSVs contribute significantly to red light running on signalized intersections and that the addition of a traffic signal pole on the right side of the road reduces the red light running probability.
Show less - Date Issued
- 2005
- Identifier
- CFE0000626, ucf:46513
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000626
- Title
- Les Temps Roulent: An Analysis of Emergency Medical and Police Response Times to Shootings and Lethality in New Orleans.
- Creator
-
Sacra, Sarah, Corzine, Harold, Huff-Corzine, Lin, Gay, David, McCutcheon, James, University of Central Florida
- Abstract / Description
-
Lethality of aggravated assaults has long been discussed in terms of weapons used, location of assault, demographics of victims, and regions of the US in which the assault occurred. However, dating back to the 1950s, medical response times have been discussed as a mediating factor, but minimally explored in analyses. The current study assesses the lethality of shootings with a primary focus on emergency medical and police response times in New Orleans, LA. Along with routine activities and...
Show moreLethality of aggravated assaults has long been discussed in terms of weapons used, location of assault, demographics of victims, and regions of the US in which the assault occurred. However, dating back to the 1950s, medical response times have been discussed as a mediating factor, but minimally explored in analyses. The current study assesses the lethality of shootings with a primary focus on emergency medical and police response times in New Orleans, LA. Along with routine activities and social disorganization indicators, 102 shootings that occurred in 3 months are analyzed to establish response time patterns of lethality. Results indicate that neither medical nor police response times impact the odds of a victim surviving a shooting, but instead, it is the days on which the violent encounters occur and the socioeconomic characteristics of the neighborhood that have a stronger influence on life or death, although not statistically significant. Limitations and future research directions are discussed.
Show less - Date Issued
- 2015
- Identifier
- CFE0005881, ucf:50877
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005881
- Title
- High performance liquid crystal devices for augmented reality and virtual reality.
- Creator
-
Talukder, Md Javed Rouf, Wu, Shintson, Moharam, Jim, Amezcua Correa, Rodrigo, Dong, Yajie, University of Central Florida
- Abstract / Description
-
See-through augmented reality and virtual reality displays are emerging due to their widespread applications in education, engineering design, medical, retail, transportation, automotive, aerospace, gaming, and entertainment. For augmented reality and virtual reality displays, high-resolution density, high luminance, fast response time and high ambient contrast ratio are critically needed. High-resolution density helps eliminate the screen-door effect, high luminance and fast response time...
Show moreSee-through augmented reality and virtual reality displays are emerging due to their widespread applications in education, engineering design, medical, retail, transportation, automotive, aerospace, gaming, and entertainment. For augmented reality and virtual reality displays, high-resolution density, high luminance, fast response time and high ambient contrast ratio are critically needed. High-resolution density helps eliminate the screen-door effect, high luminance and fast response time enable low duty ratio operation, which plays a key role for suppressing image blurs. A dimmer placed in front of AR display helps to control the incident background light, which in turn improves the image contrast. In this dissertation, we have focused three crucial display metrics: high luminance, fast motion picture response time (MPRT) and high ambient contrast ratio.We report a fringe-field switching liquid crystal display, abbreviated as d-FFS LCD, by using a low viscosity material and new diamond-shape electrode configuration. Our proposed device shows high transmittance, fast motion picture response time, low operation voltage, wide viewing angle, and indistinguishable color shift and gamma shift. We also investigate the rubbing angle effects on transmittance and response time. When rubbing angle is 0 degree, the virtual wall effect is strong, resulting in fast response time but compromised transmittance. When rubbing angle is greater than 1.2 degree, the virtual walls disappear, as a result, the transmittance increases dramatically, but the tradeoff is in slower response time. We also demonstrate a photo-responsive guest-host liquid crystal (LC) dimmer to enhance the ambient contrast ratio in augmented reality displays. The LC composition consists of photo-stable chiral agent, photosensitive azobenzene, and dichroic dye in a nematic host with negative dielectric anisotropy. In this device, transmittance changes from bright state to dark state by exposing a low intensity UV or blue light. Reversal process can be carried out by red light or thermal effect. Such a polarizer-free photo-activated dimmer can also be used for wide range of applications, such as diffractive photonic devices, portable information system, vehicular head-up displays, and smart window for energy saving purpose. A dual-stimuli polarizer-free dye-doped liquid crystal (LC) device is demonstrated as a dimmer. Upon UV/blue light exposure, the LC directors and dye molecules turn from initially vertical alignment (high transmittance state) to twisted fingerprint structure (low transmittance state). The reversal process is accelerated by combining a longitudinal electric field to unwind the LC directors from twisted fingerprint to homeotropic state, and a red light to transform the cis azobenzene back to trans. Such an electric-field-assisted reversal time can be reduced from ~10s to a few milliseconds, depending on the applied voltage. Considering power consumption, low manufacturing cost, and large fabrication tolerance, this device can be used as a smart dimmer to enhance the ambient contrast ratio for augmented reality displays.
Show less - Date Issued
- 2019
- Identifier
- CFE0007731, ucf:52425
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007731
- Title
- Advanced liquid crystal materials for display and photonic applications.
- Creator
-
Chen, Yuan, Wu, Shintson, Zeldovich, Boris, Schoenfeld, Winston, Fang, Jiyu, University of Central Florida
- Abstract / Description
-
Thin-film-transistor (TFT) liquid crystal display (LCD) has been widely used in smartphones, pads, laptops, computer monitors, and large screen televisions, just to name a few. A great deal of effort has been delved into wide viewing angle, high resolution, low power consumption, and vivid color. However, relatively slow response time and low transmittance remain as technical challenges. To improve response time, several approaches have been developed, such as low viscosity liquid crystals,...
Show moreThin-film-transistor (TFT) liquid crystal display (LCD) has been widely used in smartphones, pads, laptops, computer monitors, and large screen televisions, just to name a few. A great deal of effort has been delved into wide viewing angle, high resolution, low power consumption, and vivid color. However, relatively slow response time and low transmittance remain as technical challenges. To improve response time, several approaches have been developed, such as low viscosity liquid crystals, overdrive and undershoot voltage schemes, thin cell gap with a high birefringence liquid crystal, and elevated temperature operation. The state-of-the-art gray-to-gray response time of a nematic LC device is about 5 ms, which is still not fast enough to suppress the motion picture image blur. On the other hand, the LCD panel's transmittance is determined by the backlight, polarizers, TFT aperture ratio, LC transmittance, and color filters. Recently, a fringe-field-switching mode using a negative dielectric anisotropy (??) LC (n-FFS) has been demonstrated, showing high transmittance (98%), single gamma curve, and cell gap insensitivity. It has potential to replace the commonly used p-FFS (FFS using positive ?? LC) for mobile displays.With the urgent need of submillisecond response time for enabling color sequential displays, polymer-stabilized blue phase liquid crystal (PS-BPLC) has become an increasingly important technology trend for information display and photonic applications. BPLCs exhibit several attractive features, such as reasonably wide temperature range, submillisecond gray-to-gray response time, no need for alignment layer, optically isotropic voltage-off state, and large cell gap tolerance. However, some bottlenecks such as high operation voltage, hysteresis, residual birefringence, and slow charging issue due to the large capacitance, remain to be overcome before their widespread applications can be realized. The material system of PS-BPLC, including nematic LC host, chiral dopant, and polymer network, are discussed in detail. Each component plays an essential role affecting the electro-optic properties and the stability of PS-BPLC.In a PS-BPLC system, in order to lower the operation voltage the host LC usually has a very large dielectric anisotropy (??(>)100), which is one order of magnitude larger than that of a nematic LC. Such a large ?? not only leads to high viscosity but also results in a large capacitance. High viscosity slows down the device fabrication process and increases device response time. On the other hand, large capacitance causes slow charging time to each pixel and limits the frame rate. To reduce viscosity, we discovered that by adding a small amount (~6%) of diluters, the response time of the PS-BPLC is reduced by 2X-3X while keeping the Kerr constant more or less unchanged. Besides, several advanced PS-BPLC materials and devices have been demonstrated. By using a large ?? BPLC, we have successfully reduced the voltage to (<)10V while maintaining submillisecond response time. Finally we demonstrated an electric field-indeced monodomain PS-BPLC, which enables video-rate reflective display with vivid colors. The highly selective reflection in polarization makes it promising for photonics application.Besides displays in the visible spectral region, LC materials are also very useful electro-optic media for near infrared and mid-wavelength infrared (MWIR) devices. However, large absorption has impeded the widespread application in the MWIR region. With delicate molecular design strategy, we balanced the absorption and liquid crystal phase stability, and proposed a fluoro-terphenyl compound with low absorption in both MWIR and near IR regions. This compound serves as an important first example for future development of low-loss MWIR liquid crystals, which would further expand the application of LCs for amplitude and/or phase modulation in MWIR region.
Show less - Date Issued
- 2014
- Identifier
- CFE0005314, ucf:50531
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005314
- Title
- MEASURING THE EFFECT OF ERRATIC DEMANDON SIMULATED MULTI-CHANNEL MANUFACTURINGSYSTEM PERFORMANCE.
- Creator
-
Kohan, Nancy, Kulonda, Dennis, University of Central Florida
- Abstract / Description
-
ABSTRACT To handle uncertainties and variabilities in production demands, many manufacturing companies have adopted different strategies, such as varying quoted lead time, rejecting orders, increasing stock or inventory levels, and implementing volume flexibility. Make-to-stock (MTS) systems are designed to offer zero lead time by providing an inventory buffer for the organizations, but they are costly and involve risks such as obsolescence and wasted expenditures. The main concern of make-to...
Show moreABSTRACT To handle uncertainties and variabilities in production demands, many manufacturing companies have adopted different strategies, such as varying quoted lead time, rejecting orders, increasing stock or inventory levels, and implementing volume flexibility. Make-to-stock (MTS) systems are designed to offer zero lead time by providing an inventory buffer for the organizations, but they are costly and involve risks such as obsolescence and wasted expenditures. The main concern of make-to-order (MTO) systems is eliminating inventories and reducing the non-value-added processes and wastes; however, these systems are based on the assumption that the manufacturing environments and customers' demand are deterministic. Research shows that in MTO systems variability and uncertainty in the demand levels causes instability in the production flow, resulting in congestion in the production flow, long lead times, and low throughput. Neither strategy is wholly satisfactory. A new alternative approach, multi-channel manufacturing (MCM) systems are designed to manage uncertainties and variabilities in demands by first focusing on customers' response time. The products are divided into different product families, each with its own manufacturing stream or sub-factory. MCM also allocates the production capacity needed in each sub-factory to produce each product family. In this research, the performance of an MCM system is studied by implementing MCM in a real case scenario from textile industry modeled via discrete event simulation. MTS and MTO systems are implemented for the same case scenario and the results are studied and compared. The variables of interest for this research are the throughput of products, the level of on-time deliveries, and the inventory level. The results conducted from the simulation experiments favor the simulated MCM system for all mentioned criteria. Further research activities, such as applying MCM to different manufacturing contexts, is highly recommended.
Show less - Date Issued
- 2004
- Identifier
- CFE0000240, ucf:46275
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000240