Current Search: Sol-gel (x)
-
-
Title
-
SYNTHESIS, PROCESSING AND CHARACTERIZATION OF NANOCRYSTALLINE TITANIUM DIOXIDE.
-
Creator
-
Qiu, Shipeng, Kalita, Samar, University of Central Florida
-
Abstract / Description
-
Titanium dioxide (TiO2), one of the basic ceramic materials, has found a variety of applications in industry and in our daily life. It has been shown that particle size reduction in this system, especially to nano regime, has the great potential to offer remarkable improvement in physical, mechanical, optical, biological and electrical properties. This thesis reports on the synthesis and characterization of the nanocrystalline TiO2 ceramic in details. The study selected a simple sol-gel...
Show moreTitanium dioxide (TiO2), one of the basic ceramic materials, has found a variety of applications in industry and in our daily life. It has been shown that particle size reduction in this system, especially to nano regime, has the great potential to offer remarkable improvement in physical, mechanical, optical, biological and electrical properties. This thesis reports on the synthesis and characterization of the nanocrystalline TiO2 ceramic in details. The study selected a simple sol-gel synthesis process, which can be easily controlled and reproduced. Titanium tetraisopropoxide, isopropanol and deionized water were used as starting materials. By careful control of relative proportion of the precursor materials, the pH and peptization time, TiO2 nanopowder was obtained after calcination at 400oC. The powder was analyzed for its phases using X-ray powder diffraction (XRD) technique. Crystallite size, powder morphology and lattice fringes were determined using high-resolution transmission electron microscopy (HR-TEM). Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) were used to study the thermal properties. As-synthesized powder was uniaxially compacted and sintered at elevated temperature of 1100-1600oC to investigate the effects of sintering on nano powder particles, densification behavior, phase evolution and mechanical properties. Microstructure evolution as a function of sintering temperature was studied by scanning electron microscopy (SEM). The results showed that 400oC was an optimum calcination temperature for the as-synthesized TiO2 powder. It was high enough to achieve crystallization, and at the same time, helped minimize the thermal growth of the crystallites and maintain nanoscale features in the calcined powder. After calcination at 400oC (3 h), XRD results showed that the synthesized nano-TiO2 powder was mainly in single anatase phase. Crystallite size was first calculated through XRD, then confirmed by HR-TEM, and found to be around 5~10 nm. The lattice parameters of the nano-TiO2 powder corresponding to this calcination temperature were calculated as a=b=0.3853 nm, c=0.9581 nm, α=β=γ=90o through a Rietveld refinement technique, which were quite reasonable when comparing with the literature values. Considerable amount of rutile phase had already formed at 600oC, and the phase transformation from anatase to rutile fully completed at 800oC. The above rutilization process was clearly recorded from XRD data, and was in good corresponding to the DSC-TGA result, in which the broad exothermic peak continued until around 800oC. Results of the sintered TiO2 ceramics (1100oC-1600oC) showed that, the densification process continued with the increase in sintering temperature and the highest geometric bulk sintered density of 3.75 g/cm3 was achieved at 1600oC. The apparent porosity significantly decreased from 18.5% to 7.0% in this temperature range, the trend of which can be also clearly observed in SEM micrographs. The hardness of the TiO2 ceramics increased with the increase in sintering temperature and the maximum hardness of 471.8±30.3 HV was obtained at 1600oC. Compression strength increased until 1500oC and the maximum value of 364.1±10.7 MPa was achieved; after which a gradual decrease was observed. While sintering at ambient atmosphere in the temperature range of 1100oC-1600oC helped to improve the densification, the grain size also increased. As a result, though the sintered density at 1600oC was the highest, large and irregular-shaped grains formed at this temperature would lead to the decrease in the compression strength.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001432, ucf:47036
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001432
-
-
Title
-
TUNABLE NANOSTRUCTURE ANTI-REFLECTIVE COATINGS.
-
Creator
-
Brinley, Erik, Seal, Sudipta, University of Central Florida
-
Abstract / Description
-
Research was conducted on broadband, anti-reflective coatings for fused silica and chalcogenide substrates in the infrared region of light. Using chemical preparation to create nano-porous through nano-particle based sol-gel solutions, the alteration of optical properties including refractive index and optical thickness was conducted. The nano-particles can modify the coating surface to allow only zero-order diffracted wave propagation reducing scattering while a partially graded profile of...
Show moreResearch was conducted on broadband, anti-reflective coatings for fused silica and chalcogenide substrates in the infrared region of light. Using chemical preparation to create nano-porous through nano-particle based sol-gel solutions, the alteration of optical properties including refractive index and optical thickness was conducted. The nano-particles can modify the coating surface to allow only zero-order diffracted wave propagation reducing scattering while a partially graded profile of refractive index due surface evaporation lessened the precise phase relations of typical homogeneous coatings. My study of silica and titania sol-gel, and hybrid mixtures of the two were used to obtain the optical properties of the materials. The choice of experiments were rooted in theoretically calculated values, and parameters were selected based on quarter wavelength thickness and square root of refractive index theories of destructive cancellation of rebound waves for reduction of reflection. The fused silica system required anti-reflection in the region of 1.0-1.6 micrometer wavelength of the near-infrared. The base, uncoated transmission in this region is ~91%. A maximum transmission of 98% and no less than 97.3% over the entire region of interest was achieved. The chalcogenide system required anti-reflection in the regions of 1.0-1.6 and 3.5-5.0 micrometers of the near- and mid-infrared. The base, uncoated transmission of these regions is 61.9%. A maximum of 95% transmission was achieved for the 1.0-1.6 region and 87% for the 3.5-5.0 region. Solutions and coatings were characterized by Scanning Electron Microscope, Atomic Force Microscopy, X-ray Photoelectron Spectroscopy, particle size, elipsometry, UV-Vis-NIR, and FTIR to reveal the science behind the development and synthesis of nano optical coatings.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001641, ucf:47247
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001641
-
-
Title
-
SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE HYDROXYAPATITE POWDER; AND THE EFFECTS OF OXIDE-BASED SINTERING ADDITIVES ON TRICALCIUM PHOSPHATE.
-
Creator
-
Bhatt, Himesh, Kalita, Samar, University of Central Florida
-
Abstract / Description
-
Calcium phosphate (CP) materials have been used extensively for bone replacement and augmentation due to their similarity to the mineral component of bone. In addition to being non-toxic, they are biocompatible, not recognized as foreign materials in vivo, and most importantly, exhibit osteoconductive behavior, being able to help in bone formation during healing. CPs form an intimate physicochemical bond with the host tissue, termed osseointegration. However the main limitation of calcium...
Show moreCalcium phosphate (CP) materials have been used extensively for bone replacement and augmentation due to their similarity to the mineral component of bone. In addition to being non-toxic, they are biocompatible, not recognized as foreign materials in vivo, and most importantly, exhibit osteoconductive behavior, being able to help in bone formation during healing. CPs form an intimate physicochemical bond with the host tissue, termed osseointegration. However the main limitation of calcium phosphates is their inherent brittle nature and poor mechanical performance under complex stress states. As a result, these materials have been used clinically only in non-load-bearing applications, primarily as granules. The primary goal of this research was to enhance mechanical performance of CPs, tricalcium phosphate (TCP) and hydroxyapatite (HAp) to be precise, in an attempt to develop controlled strength-loss resorbable/ bioactive ceramic bone-grafts for hard tissue engineering. In my work on TCP, I selected and introduced small quantities of single and multi-oxide sintering additives in TCP, to study their influence on sintering behavior, densification, mechanical properties and biodegradation/ biomechanical properties in vitro. Through this research, I could improve mechanical performance of Ò-tricalcium phosphate (Ò-TCP) and controlled its rate of biodegradation by introducing of certain additives. In my second work, I improved mechanical performance of HAp (Ca10(PO4)6(OH)2 by reducing particle-size of the powder through the synthesis of stoichiometric, nanocrystalline, single phase HAp powder in the range of 2-20 nm. Synthesis of powder was accomplished via a modified low temperature sol-gel technique using ethanol/ water as solvent.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000594, ucf:46482
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000594
-
-
Title
-
ALUMINA-ALUMINUM TITANATE-TITANIA NANOCOMPOSITE: SYNTHESIS, SINTERING STUDIES, ASSESSMENT OF BIOACTIVITY AND ITS MECHANICAL AND ELECTRICAL PROPERTIES.
-
Creator
-
Somani, Vikas, Kalita, Samar, University of Central Florida
-
Abstract / Description
-
This thesis reports the development, synthesis and characterization of a ceramic-ceramic nanocomposite system for its possible application as structural and electronic biomaterial in the biomedical industry. The study selected and synthesized alumina-aluminum titanate-titania (Al2O3-Al2TiO5-TiO2) nanoceramic composite using a simple Sol-Gel technique, which can be easily reproduced. Aluminum propoxide and titanium propoxide were used as precursor chemicals. Propanol and 2- methoxy ethanol...
Show moreThis thesis reports the development, synthesis and characterization of a ceramic-ceramic nanocomposite system for its possible application as structural and electronic biomaterial in the biomedical industry. The study selected and synthesized alumina-aluminum titanate-titania (Al2O3-Al2TiO5-TiO2) nanoceramic composite using a simple Sol-Gel technique, which can be easily reproduced. Aluminum propoxide and titanium propoxide were used as precursor chemicals. Propanol and 2- methoxy ethanol were used as solvent and stabilizer, respectively. Thermal analyses were performed for a systematic understanding of phase evolution from the synthesized gel. X-Ray diffraction technique was used to confirm the phase evolution, phase purity, crystallite size and crystal structure(s) of the phase(s). Calcination of the powder at low temperatures (700°C) leads to formation of Al2O3-TiO2 nanocomposite and at higher temperatures into Al2O3-Al2TiO5-TiO2 nanocomposite confirmed by XRD analysis. Electron microscopic techniques were used to investigate powder morphology, crystallite size and inter-planner spacing. High Resolution Transmission Electron Microscopy images of the calcined powder showed agglomerates of powder particles with particle size in 15-20 nm range. As-synthesized powder was uniaxially pressed into cylindrical pellets and sintered at elevated temperatures (1000-1400oC) to study the sintering behavior, densification characteristics, and measurement of mechanical and electrical properties and assessment of bioactivity. Phase transformation induced by the sintering process was analyzed by X-ray powder diffraction technique. The effects of nanosize of powder particles and multi-phases on densification, and mechanical and electrical properties were investigated. Vickers hardness and biaxial flexural strength tests were used to determine mechanical properties. Bioactivity of the nanocomposite was assessed in Simulated Body Fluid (SBF), which has the same ionic concentration as that of human plasma. Effects of biodegradation and change in mechanical properties of the composite when kept in SBF and maintained in a static condition were studied in terms of weight loss, change in the pH of the acellular solution and change in mechanical properties (hardness and biaxial strength). Scanning Electron Microscopy was used to observe the formation of apatite crystals on the surface of the nanocomposite specimens soaked in SBF. The results obtained throw light on biocompatibility and bioactivity of Al2TiO5 phase, which has not been reported so far in the literature to the best of our knowledge. Dielectric constant and dissipation factor of the sintered nanocomposite pellets were measured using HP 4284A impedance-capacitance-resistance meter and 16451 B dielectric test fixture at 1 MHz frequency. The effects of sintering time, temperature and phases present on the electrical properties were studied and are reported in the thesis.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001092, ucf:46775
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001092
-
-
Title
-
Synthesis, Characterization And Antibacterial Activity Of Silver Embedded Silica Nanoparticle/Nanogel Formulation.
-
Creator
-
Menezes, Roseline, Santra, Swadeshmukul, Naser, Saleh, Self, William, University of Central Florida
-
Abstract / Description
-
The antibacterial property of silver (Ag) has been known since ancient time. It is reported in the literature that silver nanoparticles (AgNPs) exhibit improved antibacterial properties in comparison to silver ions of equivalent metallic Ag concentration. Such improvement in antibacterial activities is due to the high surface area to volume ratio of AgNPs (which facilitates interaction with the bacterial cells), increased release of silver ions and direct intra-cellular uptake of AgNPs...
Show moreThe antibacterial property of silver (Ag) has been known since ancient time. It is reported in the literature that silver nanoparticles (AgNPs) exhibit improved antibacterial properties in comparison to silver ions of equivalent metallic Ag concentration. Such improvement in antibacterial activities is due to the high surface area to volume ratio of AgNPs (which facilitates interaction with the bacterial cells), increased release of silver ions and direct intra-cellular uptake of AgNPs leading to localized release of Ag ions. To date, over 300 consumer products containing AgNPs are available in the market and the inventory is rapidly expanding. The antibacterial efficacy is related to the loading of AgNPs (which controls availability of active Ag ions). It is perhaps challenging to increase AgNPs loading in consumer products without compromising its aesthetic appearance. AgNPs exhibit yellow-brown color due to strong Surface Plasmon Resonance (SPR) absorption; and therefore, it is expected that an increase in loading would change the color of AgNP-containing materials. For applications, such as creating a fast-acting touch-safe surface, higher loading of AgNPs is desirable. It is also desirable to obtain a non-color forming surface. To meet the demands of desirable higher loading of AgNPs and non-color forming surface, the objective of this study is to minimize SPR by engineering Ag containing nanomaterials for potential fast-acting spray-based applications. Within this thesis several reports have been made including synthesis, characterization and antibacterial properties of Ag-loaded silica nanoparticle/nanogel (AgSiNP/NG) material containing nanoformulations. The effects of nanoformulation pH and metallic Ag content on the SPR absorption and antibacterial properties have been studied. The AgSiNP/NG materials were synthesized using silica sol-gel technique at room temperature in water. The color formation of the AgSiNP/NG material was found to be dependent on silver ion loading (15.4 wt% and 42.3 wt %) as well as on the pH (pH 4.0 and pH 7.0). A number of material characterization techniques such as HRTEM, SEM and AFM were used to characterize particle size, crystalline and surface morphology in dry state. Dynamic light scattering (DLS) technique was used to characterize particle size and size distribution in solution. UV-VIS spectroscopy technique was applied to characterize Ag ions and AgNPs in the AgSiNP/NG material. Antibacterial studies were conducted against gram negative E.coli and gram positive B.subtilis and S.aureus. A number of qualitative (well diffusion, BacLightTM live-dead(&)#174; viability) and quantitative (turbidity, resazurin viability) assays were used for antibacterial studies. It was observed that lower pH and low Ag loading minimized SPR absorption, resulting in no yellow-brown color formation. The HRTEM confirmed the formation of ~5-25 nm size highly crystalline AgNPs which were coated with dielectric silica layer (silica gel). AFM, SEM and DLS studies confirmed formation of AgSiNPs in the range between 100 nm (-) 200 nm. The AgSiNP/NG material was effective against both gram-negative and gram-positive bacteria. Based on this research it is suggested that by coating AgNPs with a dielectric material (such as silica); it is possible to suppress SPR absorption.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004483, ucf:49308
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004483
-
-
Title
-
NEW ORGANIC/INORGANIC HYBRID SOL-GEL NANOCOMPOSITE MATERIALS FOR RAMAN GAIN IN FIBER OPTICS.
-
Creator
-
Andrasik, Stephen James, Belfield, Kevin D., University of Central Florida
-
Abstract / Description
-
ABSTRACTThe recent increased availability of additional wavelengths in the telecommunications window of about 1300-1600 nm has generated an interest in new optical materials and devices that can operate outside the normally used regions of 840 nm, 1310 nm, and 1550 nm. Specifically, methods to amplify fiber optical data transmission in the regions where there is limited or no existing methods to achieve amplification is of interest in the chemistry and photonic communities. Raman gain is one...
Show moreABSTRACTThe recent increased availability of additional wavelengths in the telecommunications window of about 1300-1600 nm has generated an interest in new optical materials and devices that can operate outside the normally used regions of 840 nm, 1310 nm, and 1550 nm. Specifically, methods to amplify fiber optical data transmission in the regions where there is limited or no existing methods to achieve amplification is of interest in the chemistry and photonic communities. Raman gain is one method that has been proposed to passively amplify optical data transmission through a distributed process. Amplification is obtained through a nonlinear light scattering process where an optical wave is amplified at the expense of a higher frequency pump wave. Multiple wavelengths can be evenly amplified simultaneously in a desired region by specific selection of one or more pump wavelengths. Herein, the synthesis and characterization of new hybrid inorganic/organic sol-gels and monomers capable of producing broad wavelength Raman scattering over a spectral range of 1200-1670 nm are presented. The synthetic methodology developed facilitates the systematic approach to produce sol-gel derivatives with functional groups known to be strongly Raman scattering. Additionally, a method to synthesize and characterize a large number of different compounds using a combinatorial approach was demonstrated. Thio based derivatives of sulfonyldiphenol, isopropylidenediphenol, and triallyloxy triazine were synthesized in addition to thio derivatives of poly(hydroxystyrene). Micro-Raman spectra of the hybrid sol-gels, thio-based derivatives, and IR spectra of select sol-gel monomers were obtained.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000028, ucf:46094
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000028
-
-
Title
-
ASSESSING THE VIABILITY OF SOL-GEL NIMGO FILMS FOR SOLAR BLIND DETECTION.
-
Creator
-
Scheurer, Amber, Schoenfeld, Winston, University of Central Florida
-
Abstract / Description
-
Wide bandgap semiconductors have been broadly investigated for their potential to detect and emit high energy ultraviolet (UV) photons. Advancements in deep UV optoelectronic materials would enable the efficient and affordable realization of many medical, industrial and consumer UV optical devices. The traditional growth method, vacuum deposition, is an extremely complicated and expensive process. Sol-gel processing dramatically simplifies facility requirements and can be scaled to industrial...
Show moreWide bandgap semiconductors have been broadly investigated for their potential to detect and emit high energy ultraviolet (UV) photons. Advancements in deep UV optoelectronic materials would enable the efficient and affordable realization of many medical, industrial and consumer UV optical devices. The traditional growth method, vacuum deposition, is an extremely complicated and expensive process. Sol-gel processing dramatically simplifies facility requirements and can be scaled to industrial size. The work presented here involves a novel study of the ternary wide bandgap material Ni1-xMgxO. Films were developed by sol-gel spin coating for investigation of material and electrical properties. This method produced films 200-600 nm thick with surface roughness below 4 nm RMS. Sintered films indicated an improvement from 60% to 90% transmission near the band edge. Additionally, compositional analysis was performed by X-ray Photoelectron Spectroscopy and film defects were characterized by photoluminescence using a continuous wave He-Cd UV laser, revealing the expected oxygen defect at 413nm. This film growth technique has produced thin polycrystalline films with low surface roughness and a high degree of crystalline orientation; crucial characteristics for semiconductor devices. These films have demonstrated the ability to be tuned over the full compositional range from the bandgap of NiO (3.6 eV) to that of MgO (7.8 eV). Optoelectronic devices produced by standard photolithographic techniques are discussed as well as the electrical transport properties of their metal contacts. Based on initial results, these films have demonstrated strong potential as solar blind detectors of UV radiation.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFH0003800, ucf:44768
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH0003800
-
-
Title
-
Novel copper loaded core-shell silica nanoparticles with improved copper bio-availability : Synthesis, characterization and study of antibacterial properties.
-
Creator
-
Maniprasad, Pavithra, Santra, Swadeshmukul, Self, William, Naser, Saleh, University of Central Florida
-
Abstract / Description
-
A novel core-shell silica based antimicrobial nanoparticle was synthesized. The St(&)#246;ber silica shell has been engineered to accommodate copper. Synthesis of the core-shell Cu-silica nanoparticle (C-S CuSiNP) involves preparation of base-hydrolyzed St(&)#246;ber silica (")seed(") particles first, followed by the acid-catalyzed seeded growth of the Cu-silica shell layer around the core. Scanning electron microscopy and transmission electron microscopy showed monodispersed, spherical...
Show moreA novel core-shell silica based antimicrobial nanoparticle was synthesized. The St(&)#246;ber silica shell has been engineered to accommodate copper. Synthesis of the core-shell Cu-silica nanoparticle (C-S CuSiNP) involves preparation of base-hydrolyzed St(&)#246;ber silica (")seed(") particles first, followed by the acid-catalyzed seeded growth of the Cu-silica shell layer around the core. Scanning electron microscopy and transmission electron microscopy showed monodispersed, spherical shaped nanoparticles with smooth surface morphology. Characterization of particle size distribution in solution by the Dynamic Light Scattering (DLS) technique was fairly consistent with the electron microscopy results. Loading of Cu to nanoparticles was confirmed by the SEM-Energy Dispersive X-Ray Spectroscopy (EDS) and Atomic Absorption Spectroscopy (AAS). Antibacterial efficacy of C-S CuSiNP was evaluated against E.coli and B.subtilis using Cu hydroxide ((")Insoluble(") Cu compound) and copper sulfate as positive control and silica (")seed(") particles (without Cu loading) as negative control. Minimum Inhibitory Concentration (MIC) of C-S CuSiNP was evaluated by measuring the fluorescent intensity of resorufin to determine the decrease in viable cells with increase in copper concentration in C-S CuSiNP. The MIC value of C-S CuSiNP against both E.coli and B.subtilis was estimated to be 4.9 ppm. Bac-light fluorescence microscopy based assay was used to count relative population of the live and dead bacteria cells. Antibacterial study clearly shows that C-S CuSiNP is more effective than insoluble Cu hydroxide particles and copper sulfate at equivalent metallic Cu concentration, suggesting more soluble Cu in C-S CuSiNP material due to its core-shell design.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004479, ucf:49300
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004479
-
-
Title
-
Growth and Characterization of ZnO Based Semiconductor Materials and Devices.
-
Creator
-
Wei, Ming, Schoenfeld, Winston, Likamwa, Patrick, Moharam, M., Wu, Shintson, Osinsky, Andrei, University of Central Florida
-
Abstract / Description
-
Wide band gap semiconductors such as MgxZn1-xO represent an excellent choice for making optical photodetectors and emitters operating in the UV spectral region. High crystal and optical quality MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and sub-nanometer surface roughness were achieved by applying a low temperature nucleation layer. The...
Show moreWide band gap semiconductors such as MgxZn1-xO represent an excellent choice for making optical photodetectors and emitters operating in the UV spectral region. High crystal and optical quality MgxZn1-xO thin films were grown epitaxially on c-plane sapphire substrates by plasma-assisted Molecular Beam Epitaxy. ZnO thin films with high crystalline quality, low defect and dislocation densities, and sub-nanometer surface roughness were achieved by applying a low temperature nucleation layer. The critical growth conditions were discussed to obtain a high quality film: the sequence of Zn and O sources for initial growth of nucleation layer, growth temperatures for both ZnO nucleation and growth layers, and Zn/O ratio. By tuning Mg/Zn flux ratio, wurtzite MgxZn1-xO thin films with Mg composition as high as x=0.46 were obtained without phase segregation. The steep optical absorption edges were shown with a cut-off wavelength as short as 278nm, indicating of suitability of such material for solar blind photo detectors. Consequently, Metal-Semiconductor-Metal photoconductive and Schottky barrier devices with interdigital electrode geometry and active surface area of 1 mm2 were fabricated and characterized. Photoconductor based on showed ~100 A/W peak responsivity at wavelength of ~260nm. ZnO homoepitaxial growth was also demonstrated which has the potential to achieve very low dislocation densities and high efficiency LEDs. Two types of Zn-polar ZnO substrates were chosen in this study: one with 0.5(&)deg; miscut angle toward the [1-100] direction and the other without any miscut angle. We have demonstrated high quality films on both substrates with a low growth temperature (610(&)deg;C) compared to most of other reported work on homoepitaxial growth. An atomically flat surface with one or two monolayer step height along the [0001] direction was achieved. By detail discussions about several impact factors for the epitaxial films, ZnO films with high crystallinity verified by XRD in different crystal orientations, high PL lifetime (~0.35 ns), and not obvious threading dislocations were achieved.Due to the difficulty of conventional p-type doping with p dopant, we have explored the possibility of p-type doping with the assistance of other novel method, i.e. polarization induced effect. The idea is the sheet layer of two dimensional hole gases (2DHG) caused by the wurtzite structure's intrinsic polarization effect can be expanded to three dimension hole distribution by growing a MgZnO layer with a Mg concentration gradient. By simulation of LED structure with gradient MgZnO structure, the polarization effect was found not intense as that for III-nitrides because the difference of spontaneous polarization between ZnO and MgO is smaller than that of GaN and AlN, and the piezoelectric polarization effect may even cancel the spontaneous polarization induced effect. We have grown the linear gradient MgZnO structure with Mg composition grading from 0% to 43%, confirmed by SIMS. Hall measurement did not show any p-type conductivity, which further indicates MgZnO's weak polarization doping effect. However, the gradient MgZnO layer could act as an electron blocking layer without blocking holes injected from p layer, which is useful for high efficiency light emitters.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005275, ucf:50544
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005275