View All Items
- Title
- DIFFERENTIAL RADIO LINK PROTOCOL: AN IMPROVEMENT TO TCP OVER WIRELESS NETWORKS.
- Creator
-
Sarkar, Jaideep, Chatterjee, Mainak, University of Central Florida
- Abstract / Description
-
New generations of wireless cellular networks, including 3G and 4G technologies, are envisaged to support more mobile users and a variety of wireless multimedia services. With an increasing demand for wireless multimedia services, the performance of TCP becomes a bottleneck as it cannot differentiate between the losses due to the nature of air as a medium and high data load on the network that leads to congestion. This misinterpretation by TCP leads to a reduction in the congestion window...
Show moreNew generations of wireless cellular networks, including 3G and 4G technologies, are envisaged to support more mobile users and a variety of wireless multimedia services. With an increasing demand for wireless multimedia services, the performance of TCP becomes a bottleneck as it cannot differentiate between the losses due to the nature of air as a medium and high data load on the network that leads to congestion. This misinterpretation by TCP leads to a reduction in the congestion window size thereby resulting in reduced throughput of the system. To overcome this scenario Radio Link Protocols are used at a lower layer which hides from TCP the channel related losses and effectively increases the throughput. This thesis proposes enhancements to the radio link protocol that works underneath TCP by identifying decisive frames and categorizing them as {\em crucial} and {\em non-crucial}. The fact that initial frames from the same upper layer segment can afford a few trials of retransmissions and the later frames cannot, motivates this work. The frames are treated differentially with respect to FEC coding and ARQ schemes. Specific cases of FEC and ARQ strategies are then considered and it is shown qualitatively as how the differential treatment of frames can improve the performance of the RLP and in effect that of TCP over wireless networks.
Show less - Date Issued
- 2005
- Identifier
- CFE0000480, ucf:46352
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000480
- Title
- Load-Balancing in Local and Metro-Area networks with MPTCP and OpenFlow.
- Creator
-
Jerome, Austin, Bassiouni, Mostafa, Yuksel, Murat, Zou, Changchun, Jin, Yier, University of Central Florida
- Abstract / Description
-
In this thesis, a novel load-balancing technique for local or metro-area traffic is proposed in mesh-style topologies. The technique uses Software Defined Networking (SDN) architecture with virtual local area network (VLAN) setups typically seen in a campus or small-to-medium enterprise environment. This was done to provide a possible solution or at least a platform to expand on for the load-balancing dilemma that network administrators face today. The transport layer protocol Multi-Path TCP ...
Show moreIn this thesis, a novel load-balancing technique for local or metro-area traffic is proposed in mesh-style topologies. The technique uses Software Defined Networking (SDN) architecture with virtual local area network (VLAN) setups typically seen in a campus or small-to-medium enterprise environment. This was done to provide a possible solution or at least a platform to expand on for the load-balancing dilemma that network administrators face today. The transport layer protocol Multi-Path TCP (MPTCP) coupled with IP aliasing is also used. The trait of MPTCP of forming multiple subflows from sender to receiver depending on the availability of IP addresses at either the sender or receiver helps to divert traffic in the subflows across all available paths. The combination of MPTCP subflows with IP aliasing enables spreading out of the traffic load across greater number of links in the network, and thereby achieving load balancing and better network utilization. The traffic formed of each subflow would be forwarded across the network based on Hamiltonian 'paths' which are created in association with each switch in the topology which are directly connected to hosts. The amount of 'paths' in the topology would also depend on the number of VLANs setup for the hosts in the topology. This segregation would allow for network administrators to monitor network utilization across VLANs and give the ability to balance load across VLANs. We have devised several experiments in Mininet, and the experimentation showed promising results with significantly better throughput and network utilization compared to cases where normal TCP was used to send traffic from source to destination. Our study clearly shows the advantages of using MPTCP for load balancing purposes in SDN type architectures and provides a platform for future research on using VLANs, SDN, and MPTCP for network traffic management.
Show less - Date Issued
- 2017
- Identifier
- CFE0006887, ucf:51705
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006887
- Title
- Chaperonin Containing TCP1 (CCT) as a Target for Cancer Therapy.
- Creator
-
Carr, Ana, Khaled, Annette, Altomare, Deborah, Tigno-Aranjuez, Justine, Fernandez-Valle, Cristina, University of Central Florida
- Abstract / Description
-
Treatments for aggressive cancers like triple negative breast cancer (TNBC) and small-cell lung cancer (SCLC) have not improved and remain associated with debilitating side effects. There is an unmet medical need for better, druggable targets and improved therapeutics. To this end, we investigated the role of Chaperonin-Containing TCP1 (CCT), an evolutionarily conserved protein-folding complex composed of eight subunits (CCT1-8), in oncogenesis. Our laboratory was the first to report that the...
Show moreTreatments for aggressive cancers like triple negative breast cancer (TNBC) and small-cell lung cancer (SCLC) have not improved and remain associated with debilitating side effects. There is an unmet medical need for better, druggable targets and improved therapeutics. To this end, we investigated the role of Chaperonin-Containing TCP1 (CCT), an evolutionarily conserved protein-folding complex composed of eight subunits (CCT1-8), in oncogenesis. Our laboratory was the first to report that the CCT2 subunit is highly expressed in breast cancer and could be therapeutically targeted. To determine whether CCT is a marker of disease progression in other cancers, we analyzed CCT2 gene expression in liver, prostate and lung cancer, using publicly available genetic databases, and confirmed findings by assessing CCT2 and client proteins, like STAT3, in tumor tissues by immunohistochemistry. We found that CCT2 was high in all cancers, especially SCLC, and correlated with decreased patient survival. We tested CT20p, the peptide therapeutic developed by our laboratory to inhibit CCT, on SCLC and primary lung cells, finding that CT20p was only cytotoxic to SCLC cells. Since SCLC currently lacks targeted therapeutics, our work yielded a new targeted agent that could improve lung cancer mortality. To establish a mechanism of action for CT20p, we partially knocked out CCT2 in TNBC cells, which decreased tumorigenicity in mice and reduced levels of essential proteins like STAT3. To confirm, we overexpressed CCT2 in non-tumorigenic cells and conferred tumor-like characteristics such as increased migration and elevated STAT3. These studies positioned us to develop and validate a strategy for discovery of new small molecule inhibitors of CCT. We thus advanced the field of cancer research by demonstrating that CCT could have diagnostic potential for cancers, such as SCLC and TNBC, that are a significant cause of human death and showed that targeting CCT is a promising therapeutic approach.
Show less - Date Issued
- 2017
- Identifier
- CFE0007280, ucf:52191
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007280
- Title
- Improving fairness, throughput and blocking performance for long haul and short reach optical networks.
- Creator
-
Tariq, Sana, Bassiouni, Mostafa, Zou, Changchun, Turgut, Damla, Li, Guifang, University of Central Florida
- Abstract / Description
-
Innovations in optical communication are expected to transform the landscape of global communications, internet and datacenter networks. This dissertation investigates several important issues in optical communication such as fairness, throughput, blocking probability and differentiated quality of service (QoS). Novel algorithms and new approaches have been presented to improve the performance of optical circuit switching (OCS) and optical burst switching (OBS) for long haul, and datacenter...
Show moreInnovations in optical communication are expected to transform the landscape of global communications, internet and datacenter networks. This dissertation investigates several important issues in optical communication such as fairness, throughput, blocking probability and differentiated quality of service (QoS). Novel algorithms and new approaches have been presented to improve the performance of optical circuit switching (OCS) and optical burst switching (OBS) for long haul, and datacenter networks. Extensive simulations tests have been conducted to evaluate the effectiveness of the proposed algorithms. These simulation tests were performed over a number of network topologies such as ring, mesh and U.S. Long-Haul, some high processing computing (HPC) topologies such as 2D and 6D mesh torus topologies and modern datacenter topologies such as FatTree and BCube.Two new schemes are proposed for long haul networks to improve throughput and hop count fairness in OBS networks. The idea is motivated by the observation that providing a slightly more priority to longer bursts over short bursts can significantly improve the throughput of the OBS networks without adversely affecting hop-count fairness. The results of extensive performance tests have shown that proposed schemes improve the throughput of optical OBS networks and enhance the hop-count fairness. Another contribution of this dissertation is the research work on developing routing and wavelength assignment schemes in multimode fiber networks. Two additional schemes for long haul networks are presented and evaluated over multimode fiber networks. First for alleviating the fairness problem in OBS networks using wavelength-division multiplexing as well as mode-division multiplexing while the second scheme for achieving higher throughput without sacrificing hop count fairness.We have also shown the significant benefits of using both mode division multiplexing and wavelength division multiplexing in real-life short-distance optical networks such as the optical circuit switching networks used in the hybrid electronic-optical switching architectures for datacenters. We evaluated four mode and wavelength assignment heuristics and compared their throughput performance. We also included preliminary results of impact of the cascaded mode conversion constraint on network throughput. Datacenter and high performance computing networks share a number of common performance goals. Another highly efficient adaptive mode wavelength- routing algorithm is presented over OBS networks to improve throughput of these networks. The effectiveness of the proposed model has been validated by extensive simulation results.In order to optimize bandwidth and maximize throughput of datacenters, an extension of TCP called multipath-TCP (MPTCP) has been evaluated over an OBS network using dense interconnect datacenter topologies. We have proposed a service differentiation scheme using MPTCP over OBS for datacenter traffic. The scheme is evaluated over mixed workload traffic model of datacenters and is shown to provide tangible service differentiation between flows of different priority levels. An adaptive QoS differentiation architecture is proposed for software defined optical datacenter networks using MPTCP over OBS. This scheme prioritizes flows based on current network state.
Show less - Date Issued
- 2015
- Identifier
- CFE0005721, ucf:50146
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005721