Current Search: Telescope (x)
-
-
Title
-
OPTIMIZING THE PERFORMANCE OF AS-MANUFACTURED GRAZING INCIDENCE X-RAY TELESCOPES USING MOSAIC DETECTOR ARRAYS.
-
Creator
-
Atanassova, Martina, Harvey, James, University of Central Florida
-
Abstract / Description
-
The field of X-ray astronomy is only forty (43) years old, and grazing incidence X-ray telescopes have only been conceived and designed for a little over fifty (50) years. The Wolter Type I design is particularly well suited for stellar astronomical telescopes (very small field-of-view). The first orbiting X-ray observatory, HEAO-1 was launched in 1977, a mere twenty-eight (28) years ago. Since that time large nested Wolter Type I X-ray telescopes have been designed, build, and launched by...
Show moreThe field of X-ray astronomy is only forty (43) years old, and grazing incidence X-ray telescopes have only been conceived and designed for a little over fifty (50) years. The Wolter Type I design is particularly well suited for stellar astronomical telescopes (very small field-of-view). The first orbiting X-ray observatory, HEAO-1 was launched in 1977, a mere twenty-eight (28) years ago. Since that time large nested Wolter Type I X-ray telescopes have been designed, build, and launched by the European Space Agency (ROSAT) and NASA (the Chandra Observatory). Several smaller grazing incidence telescopes have been launched for making solar observations (SOHO, HESP, SXI). These grazing incidence designs tend to suffer from severe aberrations and at these very short wavelengths scattering effects from residual optical fabrication errors are another major source of image degradation. The fabrication of precision optical surfaces for grazing incidence X-ray telescopes thus poses a great technological challenge. Both the residual "figure" errors and the residual microroughness or "finish" of the manufactured mirrors must be precisely measured, and the image degradation due to these fabrication errors must be accurately modeled in order to predict the final optical performance of the as manufactured telescope. The fabrication process thus consists of a series of polishing and testing cycles with the predictions from the metrology data of each cycle indicating the strategy for the next polishing cycle. Most commercially available optical design and analysis software analyzes the image degradation effects of diffraction and aberrations, but does not adequately model the image degradation effects of surface scatter or the effects of state-of-the-art mosaic detectors. The work presented in this dissertation is in support of the Solar X-ray Imager (SXI) program. We have developed a rigorous procedure by which to analyze detector effects in systems which exhibit severe field-dependent aberrations (conventional transfer function analysis is not applicable). Furthermore, we developed a technique to balance detector effects with geometrical aberrations, during the design process, for wide-field applications. We then included these detector effects in a complete systems engineering analysis (including the effects of diffraction, geometrical aberrations, surface scatter effects, the mirror manufacturer error budget tree, and detector effects) of image quality for the five SXI telescopes being fabricated for NOAA's next generation GOES weather satellites. In addition we have re-optimized the remaining optical design parameters after the grazing incidence SXI mirrors have been imperfectly fabricated. This ability depends critically upon the adoption of an image quality criterion, or merit function, appropriate for the specific application. In particular, we discuss in detail how the focal plane position can be adjusted to optimize the optical performance of the telescope to best compensate for optical figure and/or finish errors resulting from the optical fabrication process. Our systems engineering analysis was then used to predict the increase in performance achieved by the re-optimization procedure. The image quality predictions are also compared with real X-ray test data from the SXI program to experimentally validate our system engineering analysis capability.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000428, ucf:46387
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000428
-
-
Title
-
ATMOSPHERIC, ORBITAL, AND ECLIPSE-DEPTH ANALYSIS OF THE HOT JUPITER HAT-P-30-WASP-51AB.
-
Creator
-
Foster, Andrew SD, Harrington, Joseph, University of Central Florida
-
Abstract / Description
-
HAT-P-30-WASP-51b is a hot-Jupiter exoplanet that orbits an F star every 2.8106 days at a distance of 0.0419 AU. Using the Spitzer Space Telescope in 2012 (Spitzer Program Number 70084) we observed two secondary eclipses at 3.6 and 4.5 ?m. We present eclipse-depth measurements of 0.177 � 0.018 % and 0.247 � 0.024 % and estimate the infrared brightness temperatures to be 1990 � 110 K and 2080 � 130 K for these two channels, respectively, from an analysis using our Photometry for Orbits,...
Show moreHAT-P-30-WASP-51b is a hot-Jupiter exoplanet that orbits an F star every 2.8106 days at a distance of 0.0419 AU. Using the Spitzer Space Telescope in 2012 (Spitzer Program Number 70084) we observed two secondary eclipses at 3.6 and 4.5 ?m. We present eclipse-depth measurements of 0.177 � 0.018 % and 0.247 � 0.024 % and estimate the infrared brightness temperatures to be 1990 � 110 K and 2080 � 130 K for these two channels, respectively, from an analysis using our Photometry for Orbits, Eclipses, and Transits (POET) pipeline. These may be grazing eclipses. We also refine its orbit using our own secondary-eclipse measurements in combination with radial- velocity and transit observations from both professional and amateur observers. Using only the phase of our secondary eclipses, we can constrain e cos(?) where e is the orbital eccentricity and ? is the argument of periastron to 0.0058 � 0.00094. This is the component of eccentricity in the plane of view,. This small but non-zero eccentricity is independent of the effects that stellar tides have on radial-velocity data. When including radial velocity data in our model, our Markov chain finds an e cos(?) of 0.0043 � 0.0007. We constrain the atmospheric temperature profile using our Bayesian Atmospheric Radiative Transfer code (BART), a large lower bound (700 km) for the scale height, and the potential for high quality transit spectroscopy observations.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFH2000074, ucf:45519
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000074
-
-
Title
-
The physical properties and composition of main-belt asteroids from infrared spectroscopy.
-
Creator
-
Landsman, Zoe, Campins, Humberto, Britt, Daniel, Fernandez, Yan, Emery, Joshua, Hernandez, Florencio, University of Central Florida
-
Abstract / Description
-
Asteroids are the remnants of planet formation, and as such, they represent a record of the physical and chemical conditions in the early solar system and its evolution over the past 4.6 billion years. Asteroids are relatively accessible by spacecraft, and thus may be a source of the raw materials necessary for future human exploration and settlement of space. Those on Earth-crossing orbits pose impact hazards for which mitigation strategies must be developed. For these reasons, several...
Show moreAsteroids are the remnants of planet formation, and as such, they represent a record of the physical and chemical conditions in the early solar system and its evolution over the past 4.6 billion years. Asteroids are relatively accessible by spacecraft, and thus may be a source of the raw materials necessary for future human exploration and settlement of space. Those on Earth-crossing orbits pose impact hazards for which mitigation strategies must be developed. For these reasons, several missions to asteroids are in progress or planned with the support of the National Aeronautics and Space Administration (NASA) and other national space agencies. The study of asteroid composition and physical surface properties is vital to both our scientific understanding of the solar system's formation and evolution and to the development of asteroid missions and resource utilization schemes. This dissertation uses infrared spectroscopy to investigate the composition and physical properties of main-belt asteroid surfaces. Our efforts are focused on two populations that are especially relevant to constraining thermal and collisional processes in the asteroid belt: the "M-type" asteroids and primitive asteroid families.To investigate volatiles in the M-type asteroids, we obtained 2-4 micron spectra of six M-type asteroids using NASA's Infrared Telescope Facility. We find spectral signatures of hydrated minerals on all six asteroids, with evidence for rotational variability of hydration in one target. Diversity in the shape of the 3-micron feature in our sampled asteroids suggests there are different modes of hydration in the M-type population. Next, we carried out a thermal and compositional study of M-type asteroid (16) Psyche using 5-14 micron spectra from the Spitzer Space Telescope. Psyche is suspected to be a remnant iron core, and it is the target of an upcoming NASA mission. Using thermophysical modeling, we find that Psyche's surface is smooth and most likely has a thermal inertia of 5-25 J/m^2/K/s^(1/2), and a bolometric emissivity of 0.9, although a scenario with an emissivity of 0.7 and thermal inertia up to 95 J/m^2/K/s^(1/2) is possible if Psyche is somewhat larger than previously determined. From comparisons with laboratory spectra of silicate and meteorite powders, Psyche's emissivity spectrum is consistent with the presence of fine-grained ((<)75 micron) silicates. These silicates may include a magnesian pyroxene component. We conclude that Psyche is likely covered in a fine silicate regolith, which may also contain iron grains, overlying an iron-rich bedrock.Finally, we compared the mid-infrared properties of two primitive asteroids families, ancient Themis (~2.5 Gyr) and young Veritas (~8 Myr). Visible and near-infrared studies show spectral differences between the two families attributed to different degrees of space weathering. To test whether these differences are apparent in the mid-infrared, we analyzed the 5-14 micron Spitzer Space Telescope spectra of 11 Themis-family asteroids and 9 Veritas-family asteroids. We detect a broad 10-micron emission feature, attributed to fine-grained and/or porous silicate regolith, in all 11 Themis-family spectra and six of nine Veritas-family asteroids, with 10-micron spectral contrast ranging from 1% +/- 0.1% to 8.5% +/- 0.9%. Comparison with laboratory spectra of primitive meteorites suggests these asteroids are similar to meteorites with relatively low abundances of phyllosilicates. We used thermal modeling to derive diameters, beaming parameters and albedos for our sample. Asteroids in both families have beaming parameters near unity and geometric albedos in the range 0.031-0.14. Spectral contrast of the 10-micron silicate emission feature is not correlated with asteroid diameter; however, higher 10-micron contrast may be associated with flatter spectral slopes in the near-infrared. There is a slight trend of increasing 10-micron contrast with decreasing albedo in the Veritas asteroids, but not the Themis asteroids. Overall, our results indicate the Themis and Veritas family members show variation in regolith texture and/or structure within both families that is not directly related to family age.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0007124, ucf:51966
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007124
-
-
Title
-
Image degradation due to surface scattering in the presence of aberrations.
-
Creator
-
Choi, Narak, Harvey, James, Zeldovich, Boris, Moharam, M., Eastes, Richard, University of Central Florida
-
Abstract / Description
-
This dissertation focuses on the scattering phenomena by well-polished optical mirror surfaces. Specifically, predicting image degradation by surface scatter from rough mirror surfaces for a two-mirror telescope operating at extremely short wavelengths (9nm~30nm) is performed. To evaluate image quality, surface scatter is predicted from the surface metrology data and the point spread function in the presence of both surface scatter and aberrations is calculated.For predicting the scattering...
Show moreThis dissertation focuses on the scattering phenomena by well-polished optical mirror surfaces. Specifically, predicting image degradation by surface scatter from rough mirror surfaces for a two-mirror telescope operating at extremely short wavelengths (9nm~30nm) is performed. To evaluate image quality, surface scatter is predicted from the surface metrology data and the point spread function in the presence of both surface scatter and aberrations is calculated.For predicting the scattering intensity distribution, both numerical and analytic methods are considered. Among the numerous analytic methods, the small perturbation method (classical Rayleigh-Rice surface scatter theory), the Kirchhoff approximation method (classical Beckman-Kirchhoff surface scatter theory), and the generalized Harvey-Shack surface scatter theory are adopted. As a numerical method, the integral equation method (method of moments) known as a rigorous solution is discussed. Since the numerical method is computationally too intensive to obtain the scattering prediction directly for the two mirror telescope, it is used for validating the three analytic approximate methods in special cases. In our numerical comparison work, among the three approximate methods, the generalized Harvey-Shack model shows excellent agreement to the rigorous solution and it is used to predict surface scattering from the mirror surfaces.Regarding image degradation due to surface scatter in the presence of aberrations, it is shown that the composite point spread function is obtained in explicit form in terms of convolutions of the geometrical point spread function and scaled bidirectional scattering distribution functions of the individual surfaces of the imaging system. The approximations and assumptions in this formulation are discussed. The result is compared to the irradiance distribution obtained using commercial non-sequential ray tracing software for the case of a two-mirror telescope operating at the extreme ultra-violet wavelengths and the two results are virtually identical. Finally, the image degradation due to the surface scatter from the mirror surfaces and the aberration of the telescope is evaluated in terms of the fractional ensquared energy (for different wavelengths and field angles) which is commonly used as an image quality requirement on many NASA astronomy programs.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004289, ucf:49492
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004289