Current Search: aerial vehicle (x)
View All Items
- Title
- COALITION FORMATION IN MULTI-AGENT UAV SYSTEMS.
- Creator
-
DeJong, Paul, Boloni, Ladislau, University of Central Florida
- Abstract / Description
-
Coalitions are collections of agents that join together to solve a common problem that either cannot be solved individually or can be solved more efficiently as a group. Each individual agent has capabilities that can benefit the group when working together as a coalition. Typically, individual capabilities are joined together in an additive way when forming a coalition. This work will introduce a new operator that is used when combining capabilities, and suggest that the behavior of the...
Show moreCoalitions are collections of agents that join together to solve a common problem that either cannot be solved individually or can be solved more efficiently as a group. Each individual agent has capabilities that can benefit the group when working together as a coalition. Typically, individual capabilities are joined together in an additive way when forming a coalition. This work will introduce a new operator that is used when combining capabilities, and suggest that the behavior of the operator is contextual, depending on the nature of the capability itself. This work considers six different capabilities of Unmanned Air Vehicles (UAV) and determines the nature of the new operator in the context of each capability as coalitions (squadrons) of UAVs are formed. Coalitions are formed using three different search algorithms, both with and without heuristics: Depth-First, Depth-First Iterative Deepening, and Genetic Algorithm (GA). The effectiveness of each algorithm is evaluated. Multi agent-based UAV simulation software was developed and used to test the ideas presented. In addition to coalition formation, the software aims to address additional multi-agent issues such as agent identity, mutability, and communication as applied to UAV systems, in a realistic simulated environment. Social potential fields provide a means of modeling a clustering attractive force at the same time as a collision-avoiding repulsive force, and are used by the simulation to maintain aircraft position relative to other UAVs.
Show less - Date Issued
- 2005
- Identifier
- CFE0000394, ucf:46332
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000394
- Title
- Online Path Planning and Control Solution for a Coordinated Attack of Multiple Unmanned Aerial Vehicles in a Dynamic Environment.
- Creator
-
Vega-Nevarez, Juan, Qu, Zhihua, Haralambous, Michael, Xu, Yunjun, University of Central Florida
- Abstract / Description
-
The role of the unmanned aerial vehicle (UAV) has significantly expanded in the military sector during the last decades mainly due to their cost effectiveness and their ability to eliminate the human life risk. Current UAV technology supports a variety of missions and extensive research and development is being performed to further expand its capabilities. One particular field of interest is the area of the low cost expendable UAV since its small price tag makes it an attractive solution for...
Show moreThe role of the unmanned aerial vehicle (UAV) has significantly expanded in the military sector during the last decades mainly due to their cost effectiveness and their ability to eliminate the human life risk. Current UAV technology supports a variety of missions and extensive research and development is being performed to further expand its capabilities. One particular field of interest is the area of the low cost expendable UAV since its small price tag makes it an attractive solution for target suppression. A swarm of these low cost UAVs can be utilized as guided munitions or kamikaze UAVs to attack multiple targets simultaneously. The focus of this thesis is the development of a cooperative online path planning algorithm that coordinates the trajectories of these UAVs to achieve a simultaneous arrival to their dynamic targets. A nonlinear autopilot design based on the dynamic inversion technique is also presented which stabilizes the dynamics of the UAV in its entire operating envelope. A nonlinear high fidelity six degrees of freedom model of a fixed wing aircraft was developed as well that acted as the main test platform to verify the performance of the presented algorithms
Show less - Date Issued
- 2012
- Identifier
- CFE0004613, ucf:49925
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004613
- Title
- EFFECT OF OPERATOR CONTROL CONFIGURATION ON UNMANNED AERIAL SYSTEM TRAINABILITY.
- Creator
-
Neumann, John, Kincaid, Peter, University of Central Florida
- Abstract / Description
-
Unmanned aerial systems (UAS) carry no pilot on board, yet they still require live operators to handle critical functions such as mission planning and execution. Humans also interpret the sensor information provided by these platforms. This applies to all classes of unmanned aerial vehicles (UAV's), including the smaller portable systems used for gathering real-time reconnaissance during military operations in urban terrain. The need to quickly and reliably train soldiers to control small...
Show moreUnmanned aerial systems (UAS) carry no pilot on board, yet they still require live operators to handle critical functions such as mission planning and execution. Humans also interpret the sensor information provided by these platforms. This applies to all classes of unmanned aerial vehicles (UAV's), including the smaller portable systems used for gathering real-time reconnaissance during military operations in urban terrain. The need to quickly and reliably train soldiers to control small UAS operations demands that the human-system interface be intuitive and easy to master. In this study, participants completed a series of tests of spatial ability and were then trained (in simulation) to teleoperate a micro-unmanned aerial vehicle equipped with forward and downward fixed cameras. Three aspects of the human-system interface were manipulated to assess the effects on manual control mastery and target detection. One factor was the input device. Participants used either a mouse or a specially programmed game controller (similar to that used with the Sony Playstation 2 video game console). A second factor was the nature of the flight control displays as either continuous or discrete (analog v. digital). The third factor involved the presentation of sensor imagery. The display could either provide streaming video from one camera at a time, or present the imagery from both cameras simultaneously in separate windows. The primary dependent variables included: 1) time to complete assigned missions, 2) number of collisions, 3) number of targets detected, and 4) operator workload. In general, operator performance was better with the game controller than with the mouse, but significant improvement in time to complete occurred over repeated trials regardless of the device used. Time to complete missions was significantly faster with the game controller, and operators also detected more targets without any significant differences in workload compared to mouse users. Workload on repeated trials decreased with practice, and spatial ability was a significant covariate of workload. Lower spatial ability associated with higher workload scores. In addition, demographic data including computer usage and video gaming experience were collected and analyzed, and correlated with performance. Higher video gaming experience was also associated with lower workload.
Show less - Date Issued
- 2006
- Identifier
- CFE0001496, ucf:47080
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001496
- Title
- Pressure Image Based Attitude Controller for Small Unmanned Aerial Vehicles.
- Creator
-
Thompson, Kenneth, Xu, Yunjun, Gou, Jihua, Lin, Kuo-Chi, University of Central Florida
- Abstract / Description
-
As technology improves, small unmanned aerial vehicles (SUAV) have been identified for their utility in a variety of applications in which larger unmanned craft may be incapable of accomplishing mission objectives. These aircraft with their small size and long flight durations are ideal for hazardous inspection and long duration surveillance missions. One challenge preventing the widespread adoption of these systems is their instability to abrupt changes in the flow field around them due to...
Show moreAs technology improves, small unmanned aerial vehicles (SUAV) have been identified for their utility in a variety of applications in which larger unmanned craft may be incapable of accomplishing mission objectives. These aircraft with their small size and long flight durations are ideal for hazardous inspection and long duration surveillance missions. One challenge preventing the widespread adoption of these systems is their instability to abrupt changes in the flow field around them due to wind gusts or flow separation.Currently, traditional rigid body based sensors are implemented in their flight control systems, which are sufficient in higher inertia aircraft for accurate control.However, in low inertia SUAV applications during a flow event, often, the inertial sensors are incapable of detecting the event before catastrophic failure.A method of directly measuring the flow information around the SUAV in order to generate control commands will improve the stability of these systems by allowing these systems to directly react to flow events.In contrast, established inertial based control systems can only react to changes in vehicle dynamics caused by flow events.Such a method is developed utilizing a network of pressure and shear sensors embedded in the wing and used to create (")flow images(") which can be easily manipulated to generate control commands.A method of accurately calculating the aerodynamic moment acting on the aircraft based on the flow image is also developed for implementation of flow image-based control in real world systems.
Show less - Date Issued
- 2018
- Identifier
- CFE0007417, ucf:52722
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007417
- Title
- Detecting, Tracking, and Recognizing Activities in Aerial Video.
- Creator
-
Reilly, Vladimir, Shah, Mubarak, Georgiopoulos, Michael, Stanley, Kenneth, Dogariu, Aristide, University of Central Florida
- Abstract / Description
-
In this dissertation we address the problem of detecting humans and vehicles, tracking their identities in crowded scenes, and finally determining human activities. First, we tackle the problem of detecting moving as well as stationary objects in scenes that contain parallax and shadows. We constrain the search of pedestrians and vehicles by representing them as shadow casting out of plane or (SCOOP) objects.Next, we propose a novel method for tracking a large number of densely moving objects...
Show moreIn this dissertation we address the problem of detecting humans and vehicles, tracking their identities in crowded scenes, and finally determining human activities. First, we tackle the problem of detecting moving as well as stationary objects in scenes that contain parallax and shadows. We constrain the search of pedestrians and vehicles by representing them as shadow casting out of plane or (SCOOP) objects.Next, we propose a novel method for tracking a large number of densely moving objects in aerial video. We divide the scene into grid cells to define a set of local scene constraints which we use as part of the matching cost function to solve the tracking problem which allows us to track fast-moving objects in low frame rate videos.Finally, we propose a method for recognizing human actions from few examples. We use the bag of words action representation, assume that most of the classes have many examples, and construct Support Vector Machine models for each class. We then use Support Vector Machines for classes with many examples to improve the decision function of the Support Vector Machine that was trained using few examples via late fusion of weighted decision values.
Show less - Date Issued
- 2012
- Identifier
- CFE0004627, ucf:49935
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004627