Current Search: antenna (x)
Pages
-
-
Title
-
MODIFIED SIERPINSKI FRACTAL ANTENNA.
-
Creator
-
Luintel, Tripti, Wahid, Parveen, University of Central Florida
-
Abstract / Description
-
Fractal antennas have the potential to provide multi-band solution through the property of self similarity that the fractal shape possess. This thesis deals with some modifications of the original Sierpinski fractal patch antenna, providing additional parameters to optimize in order to get the required radiation characteristics. A systematic study of the original Sierpinski monopole was done to gain an insight on the operation and multi-band behavior of the antenna and a similar study was...
Show moreFractal antennas have the potential to provide multi-band solution through the property of self similarity that the fractal shape possess. This thesis deals with some modifications of the original Sierpinski fractal patch antenna, providing additional parameters to optimize in order to get the required radiation characteristics. A systematic study of the original Sierpinski monopole was done to gain an insight on the operation and multi-band behavior of the antenna and a similar study was done to find out why the patch version of Sierpinski lacks multi-band behavior. A Sierpinski antenna is designed by merging a grid and the fractal restoring the multi-band behavior. A stacked Sierpinski antenna is then designed by introducing an intermediate layer containing the triangular patch whose size is equal to that of the triangular hole in the fractal structure. The introduction of a gap in this structure improves the overall radiation pattern. The antennas are analyzed using the commercial IE3D package and the simulated radiation patterns are presented.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000299, ucf:46216
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000299
-
-
Title
-
Implementation of a 35 GHz Microstrip Antenna System.
-
Creator
-
Albritton, Rachel S., Wahid, Parveen A., Engineering
-
Abstract / Description
-
University of Central Florida College of Engineering Thesis; Millimeter waves, corresponding to the frequency range 30 to 300 GHz, have characteristics which make them ideal for many applications. Antennas at these frequencies have the advantage of reduced size and weight and can be fabricated as an integral part of the system they are used in. Millimeter wave microstrip antennas have been extensively researched over the past decade. The purposed of this report was to build and test 35 GHz...
Show moreUniversity of Central Florida College of Engineering Thesis; Millimeter waves, corresponding to the frequency range 30 to 300 GHz, have characteristics which make them ideal for many applications. Antennas at these frequencies have the advantage of reduced size and weight and can be fabricated as an integral part of the system they are used in. Millimeter wave microstrip antennas have been extensively researched over the past decade. The purposed of this report was to build and test 35 GHz microstrip antennas as well as put into operation a high voltage klystron power supply, Micro-Now Model 756. The antennas were fabricated and tested in the lab and the results obtained are reported. The operation of the Model 756 power supply is also outlined in detail.
Show less
-
Date Issued
-
1987
-
Identifier
-
CFR0008159, ucf:53078
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFR0008159
-
-
Title
-
TRANSMISSION LINES FOR IR SIGNAL ROUTING.
-
Creator
-
Mandviwala, Tasneem, Boreman, Glenn, University of Central Florida
-
Abstract / Description
-
In this dissertation, the design, fabrication, and characterization of coplanar striplines, vias, and microstrip lines is investigated, from the point of view of developing interconnections for antenna-coupled infrared detectors operating in the 8- to 12-micron wavelength range. To our knowledge, no previous efforts have been made to study the performance of metallic-wire transmission lines at infrared frequencies. Both the design and fabrication of these structures present unique challenges....
Show moreIn this dissertation, the design, fabrication, and characterization of coplanar striplines, vias, and microstrip lines is investigated, from the point of view of developing interconnections for antenna-coupled infrared detectors operating in the 8- to 12-micron wavelength range. To our knowledge, no previous efforts have been made to study the performance of metallic-wire transmission lines at infrared frequencies. Both the design and fabrication of these structures present unique challenges. Because of attenuation and dispersion issues, the analytical formulas for transmission-line parameters that are valid below a few hundred GHz are not applicable in the infrared. Therefore, numerical modeling was performed to characterize the coplanar striplines and microstrip structures in terms of transmission-line parameters: characteristic impedance, attenuation constant and effective index of refraction. These parameters were extracted by fitting the computed impedance as a function of transmission-line length to the usual impedance transformation equation. The material properties used in the model are realistic, having been measured at the frequencies of interest by infrared ellipsometric techniques. The transmission-line parameters cannot be measured directly in the infrared, so experimental validation was carried out by measuring the response of a bolometer, which was connected to a dipole antenna by different lengths of both the coplanar and microstrip transmission lines. The modeled and measured responses for both types of transmission lines was in good agreement. A third type of signal-routing structure was also investigated, that of the vertical via, essentially a low-frequency connection that facilitates location of the bondpads away from the plane of the antenna. In the configuration studied, the vias pass vertically down through the SiO2 isolation layer and a groundplane, which provides electromagnetic isolation between the antenna and the structures that allow for signal-extraction from the bolometer. This type of interconnection will be useful for future detailed studies relating the angular antenna pattern to the spatial response of the antenna-coupled sensor.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001304, ucf:47025
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001304
-
-
Title
-
INFRARED ANTENNA-COUPLED PHASED-ARRAY.
-
Creator
-
Middlebrook, Christopher, Boreman, Glenn, University of Central Florida
-
Abstract / Description
-
Phased-array antennas are commonplace in the radiofrequency portion of the electromagnetic spectrum. Exploitation of phasing effects between multiple antennas facilitates a wide range of applications, including synthetic-aperture radar, beam forming, and beam scanning. For the first time, the phased addition of multiple dipole antennas is demonstrated in the infrared, at a wavelength of 10.6 micrometers. Coplanar strip lines are used to interconnect the antennas, preserving the phase of the...
Show morePhased-array antennas are commonplace in the radiofrequency portion of the electromagnetic spectrum. Exploitation of phasing effects between multiple antennas facilitates a wide range of applications, including synthetic-aperture radar, beam forming, and beam scanning. For the first time, the phased addition of multiple dipole antennas is demonstrated in the infrared, at a wavelength of 10.6 micrometers. Coplanar strip lines are used to interconnect the antennas, preserving the phase of the individual contributions. Several different proof-of-concept experiments are performed, using planar antennas fabricated with direct-write electron-beam lithography. Infrared-frequency currents from two dipole antennas are summed together at a common feedpoint and dissipated in a bolometric load. Angular pattern measurements show that the direction of maximum gain depends on the phase difference between the antennas. As more antennas are added together in phase, beam narrowing is observed in the angular response. Another experiment uses a two-dipole array to directly measure the magnitude of the mutual coherence function, at the plane of the antennas, of a spatially incoherent narrowband source. Measurements are also made of the broadside antenna response comparing air-side and substrate-side situations for a dipole antenna fabricated on a hemispherical immersion lens. In all cases, the measured behavior is confirmed by electromagnetic analysis.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001709, ucf:47327
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001709
-
-
Title
-
DEMONSTRATING REFLECTARRAY BEHAVIOR AT INFRARED.
-
Creator
-
Ginn, James, Lail, Brian, University of Central Florida
-
Abstract / Description
-
Reflectarrays are traditionally passive, planar microstrip antenna devices designed for reflected phase manipulation at each individual antenna element making up the array. By varying the phase response across the surface with the antenna elements, reflectarrays allows a planar surface to exhibit electromagnetically an arbitrary geometry, such as a spherical surface. Initially proposed as a low-cost replacement for bulky parabolic reflectors, reflectarrays have been successfully developed and...
Show moreReflectarrays are traditionally passive, planar microstrip antenna devices designed for reflected phase manipulation at each individual antenna element making up the array. By varying the phase response across the surface with the antenna elements, reflectarrays allows a planar surface to exhibit electromagnetically an arbitrary geometry, such as a spherical surface. Initially proposed as a low-cost replacement for bulky parabolic reflectors, reflectarrays have been successfully developed and utilized at both RF and millimeter-wave frequencies. From the standpoint of an optical systems designer, adapting low-frequency reflectarray technology to develop a sub-millimeter and infrared reflectarray (SMIR) would provide a highly desirable alternative to similarly behaved polished or diffractive optical devices. Compared to traditional optical reflectors, SMIRs should be cheaper to fabricate, have a smaller physical footprint, allow for utility stacking, and encourage direct integration of aberration correction. To demonstrate the feasibility of utilizing reflectarray technology at infrared (IR), a simple SMIR proof of concept has been successfully designed, fabricated, and tested. The SMIR is comprised of three independent arrays or "stripes" of a single size element on a coated optical flat. Actual reflectarray elements consist of variable size patches that exhibit higher operating bandwidths than reflectarrays utilizing other types of elements and are easier to fabricate at small dimensions. For testing, each stripe element has been chosen to exhibit a unique phase shift for measurement using an IR interferometer. Preliminary investigation of future reflectarray development is also discussed. Emphasis is placed on improving operating bandwidth, development of a planar focusing element, and aberration correction. With further development, SMIR technology should present a powerful tool for low cost, flexible optical system design.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001037, ucf:46814
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001037
-
-
Title
-
Infrared Tapered Slot Antennas Coupled to Tunnel Diodes.
-
Creator
-
Florence, Louis, Boreman, Glenn, Likamwa, Patrick, Schoenfeld, Winston, Lail, Brian, University of Central Florida
-
Abstract / Description
-
Tapered slot antennas (TSAs) have seen considerable application in the millimeter-wave portion of the spectrum. Desirable characteristics of TSAs include symmetric E- and H-plane antenna patterns, and broad non-resonant bandwidths. We investigate extension of TSA operation toward higher frequencies in the thermal infrared (IR), using a metal-oxide-metal diode as the detector. Several different infrared TSA design forms are fabricated using electron-beam lithography and specially developed...
Show moreTapered slot antennas (TSAs) have seen considerable application in the millimeter-wave portion of the spectrum. Desirable characteristics of TSAs include symmetric E- and H-plane antenna patterns, and broad non-resonant bandwidths. We investigate extension of TSA operation toward higher frequencies in the thermal infrared (IR), using a metal-oxide-metal diode as the detector. Several different infrared TSA design forms are fabricated using electron-beam lithography and specially developed thin-film processes. The angular antenna patterns of TSA-coupled diodes are measured at 10.6 micrometer wavelength in both E- and H-planes, and are compared to results of finite-element electromagnetic modeling using Ansoft HFSS. Parameter studies are carried out, correlating the geometric and material properties of several TSA design forms to numerical-model results and to measurements. A significant increase in antenna gain is noted for a dielectric-overcoat design. The traveling-wave behavior of the IR TSA structure is investigated using scattering near-field microscopy. The measured near-field data is compared to HFSS results. Suggestions for future research are included.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004376, ucf:49395
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004376
-
-
Title
-
Microstrip Patch Electrically Steerable Parasitic Array Radiators.
-
Creator
-
Luther, Justin, Gong, Xun, Wahid, Parveen, Jones, W, Wu, Xinzhang, Flitsiyan, Elena, University of Central Florida
-
Abstract / Description
-
This dissertation explores the expansion of the Electrically Steerable Parasitic Array Radiator (ESPAR) technology to arrays using microstrip patch elements. Scanning arrays of two and three closely-coupled rectangular patch elements are presented, which incorporate no phase shifters. These arrays achieve directive radiation patterns and scanning of up to 26(&)deg; with maintained impedance match. The scanning is effected by tunable reactive loads which are used to control the mutual coupling...
Show moreThis dissertation explores the expansion of the Electrically Steerable Parasitic Array Radiator (ESPAR) technology to arrays using microstrip patch elements. Scanning arrays of two and three closely-coupled rectangular patch elements are presented, which incorporate no phase shifters. These arrays achieve directive radiation patterns and scanning of up to 26(&)deg; with maintained impedance match. The scanning is effected by tunable reactive loads which are used to control the mutual coupling between the elements, as well as additional loads which compensate to maintain the appropriate resonant frequency. The design incorporates theoretical analysis of the system of coupled antennas with full-wave simulation. A prototype of the three-element array at 1 GHz is fabricated and measured to exhibit a maximum gain of 7.4 dBi with an efficiency of 79.1%. Further, the microstrip ESPAR is thoroughly compared to uniformly-illuminated arrays of similar size. To satisfy the need for higher directivity antennas with inexpensive electronic scanning, the microstrip ESPAR is then integrated as a subarray. The three-element subcell fabrication is simplified to a single layer with an inverted-Y groove in the ground plane, allowing for DC biasing without the need for the radial biasing stubs or tuning stubs found in the two-layer design. The 1 GHz ESPAR array employs a corporate feed network consisting of a Wilkinson power divider with switchable delay line phase shifts, ring hybrid couplers, and achieves a gain of 12.1 dBi at boresight with (&)#177;20(&)deg; scanning and low side lobes. This array successfully illustrates the cost savings associated with ESPAR subarray scanning and the associated reduction in required number of phase shifters in the RF front end.
Show less
-
Date Issued
-
2013
-
Identifier
-
CFE0005107, ucf:50754
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005107
-
-
Title
-
DESIGN AND ANALYSIS OF ADAPTIVE AND RECONFIGURABLE ANTENNAS FOR WIRELESS COMMUNICATION.
-
Creator
-
Ali, Maha Abdelmoneim, Wahid, Parveen, University of Central Florida
-
Abstract / Description
-
Modern radar and communication systems have experienced a tremendous increase in the number of antennas onboard, on the ground, and in orbital space. This places a burden due to the confined volume and limited weight requirements especially in space applications. The reconfigurable antenna is a promising and exciting new type of antenna, where through the use of appropriate switches the antenna can be structurally reconfigured, to maintain the elements near their resonant dimensions for...
Show moreModern radar and communication systems have experienced a tremendous increase in the number of antennas onboard, on the ground, and in orbital space. This places a burden due to the confined volume and limited weight requirements especially in space applications. The reconfigurable antenna is a promising and exciting new type of antenna, where through the use of appropriate switches the antenna can be structurally reconfigured, to maintain the elements near their resonant dimensions for several frequency bands. This increases the bandwidth of the antenna dramatically, which enables the use of one antenna for several applications. Four novel reconfigurable antenna elements were designed to work at 2.45 GHz and at 5.78 GHz, to cover the transition period when wireless communication will shift to the 5.78 GHz band. The four elements designed are: the reconfigurable Yagi, the reconfigurable corner-fed triangular loop antenna, the reconfigurable center-fed equilateral triangular loop antenna and the reconfigurable rectangular-spiral antenna. None of these antennas have been reported in the literature. Simulation results for all four antennas were obtained using IE3D. Fabrication and measurements for the Yagi antenna was done and the measured results agree with simulations. All four antennas have very good performance with respect to the 3dB beamwidth and directivity. However the reconfigurable rectangular-spiral antenna is the most compact in size among all four antennas. It is (20 mm x 20 mm) in size. At 2.45 GHz it has a 3dB beamwidth of 870 and directivity of 6.47dB. As for the 5.78GHz frequency the 3dB beamwidth is 82.50 and the directivity is 7.16dB. This dissertation also introduces the use of reconfigurable antenna elements in adaptive arrays. An adaptive array that can null interference and direct its main lobe to the desired signal while being reconfigurable to maintain functionality at several frequency bands has the potential to revolutionize wireless communications in the future. Through several examples, at both the design frequencies, it is shown that the reconfigurable and adaptive antenna arrays are successful in nulling noises incident on the array. These examples illustrate how reconfigurable elements and adaptive arrays can be combined very beneficially for use in wireless communication systems.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000003, ucf:46147
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000003
-
-
Title
-
POWER DISTRIBUTION OF TERAHERTZ EMISSION FROM HEXAGONAL BSCCO MICROSTRIP ANTENNAS.
-
Creator
-
Davis, Andrew E, Klemm, Richard, University of Central Florida
-
Abstract / Description
-
We analyze the distribution of coherent terahertz radiation from a regular hexagonal microstrip antenna (MSA) made from the high-Tc superconductor Bi2Sr2CaCu2O8+x (BSCCO). We discuss the C6v symmetry of the solutions of the wave equation on a hexagonal domain and distinguish between the closed-form and non-closed-form solutions. The closed-form wavefunctions of the transverse magnetic (TM) electromagnetic cavity modes are presented and formulas for the radiated power arising from the uniform...
Show moreWe analyze the distribution of coherent terahertz radiation from a regular hexagonal microstrip antenna (MSA) made from the high-Tc superconductor Bi2Sr2CaCu2O8+x (BSCCO). We discuss the C6v symmetry of the solutions of the wave equation on a hexagonal domain and distinguish between the closed-form and non-closed-form solutions. The closed-form wavefunctions of the transverse magnetic (TM) electromagnetic cavity modes are presented and formulas for the radiated power arising from the uniform part of the AC Josephson current and from the resonant cavity modes are derived. The wavefunctions and angular distribution of radiation from both sources are plotted for sixteen of the lowest-energy modes. Finally, we comment on the relevance of these power distributions to hexagonal arrays of equilateral triangular MSAs and propose a strategy for studying the non-closed-form modes.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFH2000241, ucf:46016
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFH2000241
-
-
Title
-
Integration of High-Q filters with Highly Efficient Antennas.
-
Creator
-
Yusuf, Yazid, Gong, Xun, Wahid, Parveen, Jones, W, Wu, Xinzhang, Wang, Jing, University of Central Florida
-
Abstract / Description
-
The integration of high-quality (Q)-factor 3-D filters with highly efficient antennas is addressed in this dissertation. Integration of filters and antennas into inseparable units eliminates the transitions between the otherwise separate structures resulting in more compact and efficient systems. The compact, highly efficient integrated 3-D filter/antenna systems, enabled by the techniques developed herein, allow for the realization of integrated RF front ends with significantly- reduced form...
Show moreThe integration of high-quality (Q)-factor 3-D filters with highly efficient antennas is addressed in this dissertation. Integration of filters and antennas into inseparable units eliminates the transitions between the otherwise separate structures resulting in more compact and efficient systems. The compact, highly efficient integrated 3-D filter/antenna systems, enabled by the techniques developed herein, allow for the realization of integrated RF front ends with significantly- reduced form factors.Integration of cavity filters with slot antennas in a single planar substrate is first demonstrated. Due to the high Q factor of cavity resonators, the efficiency of the integrated filter/antenna system is found to be the same as that of a reference filter with the same filtering characteristics. This means a near 100% efficient slot antenna is achieved within this integrated filter/antenna system. To further reduce the footprint of the integrated systems, vertically integrated filter/antenna systems are developed. We then demonstrate the integration of cavity filters with aperture antenna structures which enable larger bandwidths compared with slot antennas. The enhanced bandwidths are made possible through the excitation and radiation of surface waves. To obtain omnidirectional radiation patterns , we integrate cavity filters with monopole antennas. Finally, the integration of filters with patch antennas is addressed. Unlike the other filter/antenna integration examples presented, in which the antenna is utilized as an equivalent load, the patch antenna provides an additional pole in the filtering function.The presented techniques in this dissertation can be applied for filter/antenna integration in all microwave, and millimeter-wave frequency regions.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0004183, ucf:49075
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004183
-
-
Title
-
Enhancement of Antenna Array Performance Using Reconfigurable Slot-Ring Antennas and Integrated Filter/Antennas.
-
Creator
-
Li, Tianjiao, Gong, Xun, Wahid, Parveen, Yuan, Jiann-Shiun, Abdolvand, Reza, Kuebler, Stephen, University of Central Florida
-
Abstract / Description
-
As modern communication system technology develops, the demand for devices with smaller size, higher efficiency, and more functionality has increased dramatically. In addition, highly integrated RF-front-end modules with a reduced footprint and less transition loss between cascaded devices are desirable in most advanced wireless communication systems. Antenna arrays are widely used in wireless communication systems due to their high directivity and beam steering capability. Moreover, antenna...
Show moreAs modern communication system technology develops, the demand for devices with smaller size, higher efficiency, and more functionality has increased dramatically. In addition, highly integrated RF-front-end modules with a reduced footprint and less transition loss between cascaded devices are desirable in most advanced wireless communication systems. Antenna arrays are widely used in wireless communication systems due to their high directivity and beam steering capability. Moreover, antenna arrays are preferred in mobile communication systems for diversity reception to reduce signal fading effects. In order to meet the various requirements of rapidly developing wireless communication systems, low cost, compact, multifunctional integrated antenna arrays are in high demand.Reconfigurable antennas that can flexibly adapt to different applications by dynamically changing their frequency and radiation properties have attracted a lot of attention. Frequency, radiation pattern, polarization, or a combination of two or more of these parameters in the reconfiguration of antennas was studied and presented in recent years. A single reconfigurable antenna is able to replace multiple traditional antennas and accomplish different tasks. Thus, the complexity of wireless communication systems can be greatly reduced with a smaller device size. On the other hand, the integration of antennas with other devices in wireless communication systems that can improve the efficiency and shrink the device size is a growing trend in antenna technology. Compact and highly efficient integrated filters and antennas were studied previously; the studies show that by seamlessly co-designing filters with patch antennas, the fractional bandwidth (FBW) of the antennas can be enhanced as compared to stand-alone antennas.However, the advantages of both the reconfigurable antenna and integrated filter/antenna technology have not been fully applied to antenna array applications. Therefore, this dissertation explores how to maximize the antenna array performance using reconfigurable antennas and integrated filter/antennas. A continuously frequency reconfigurable slot-ring antenna/array with switches and varactors is presented first. By changing the state of the loaded switches, the reconfigurable slot-ring antenna/array is able to operate as an L-band slot-ring antenna or a 2(&)#215;2 S-band slot-ring antenna array. In each frequency band, the operation frequency of the antenna/array can be continuously tuned with the loaded varactors. To further enhance the functionality of the reconfigurable slot-ring antenna array, a dual-polarized fractal-shaped reconfigurable slot-ring antenna/array is developed with a reduced number of switches and an increased FBW. Additionally, ground plane solutions are explored to achieve single-sided radiation. The benefits of filter/antenna integration are also investigated in both linearly polarized patch phased arrays and circularly polarized patch antenna arrays. Finally, a preliminary study of a tunable integrated evanescent mode filter/antenna is conducted to validate the concept of combining reconfigurable antennas and integrated filter/antennas.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006950, ucf:51661
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006950
-
-
Title
-
Customizable Antenna Array Using Reconfigurable Antenna Elements.
-
Creator
-
Shirazi, Mahmoud, Gong, Xun, Wahid, Parveen, Jones, W Linwood, Abdolvand, Reza, Kuebler, Stephen, University of Central Florida
-
Abstract / Description
-
A shared-aperture reconfigurable slot-ring antenna array switching between different frequency bands and polarizations is presented for phased array applications. PIN diode switches are incorporated into the slots of the antenna to change the state of the reconfigurable slot-ring antenna array. Each frequency band has its own feeding lines which allows for the use of high-performance narrow-band transmit/receive (T/R) modules instead of ultra wideband (UWB) T/R modules. Furthermore, the...
Show moreA shared-aperture reconfigurable slot-ring antenna array switching between different frequency bands and polarizations is presented for phased array applications. PIN diode switches are incorporated into the slots of the antenna to change the state of the reconfigurable slot-ring antenna array. Each frequency band has its own feeding lines which allows for the use of high-performance narrow-band transmit/receive (T/R) modules instead of ultra wideband (UWB) T/R modules. Furthermore, the spacing between the elements in each frequency band is less than half free-space wavelength (?0) over the frequency band of operation which enables grating-lobe-free beam scanning. This is the first shared-aperture reconfigurable dual-polarized antenna with separate feeding for each band which is scalable to a larger array with element spacing of less than 0.5?0 in all frequency bands of operation.First, a switchable-band reconfigurable antenna array switching between L and C bands is presented. This antenna operates at 1.76/5.71 GHz with a fractional bandwidth (FBW) of 8.6%/11.5%, realized gain of 0.1/4.2 dBi and radiation efficiency of 66.6%/80.7% in the L-/C- band operating states, respectively. Second, a wideband version of the reconfigurable antenna element using fractal geometries is presented. This dual-polarized antenna element is switching between S and C bands with wide bandwidth in each operating state. In the S-/C-band operating state, this antenna shows 69.1%/58.3% FBW with a maximum realized gain of 2.4/3.1 dBi. Third, the wideband antenna element is extended to an antenna array. The reconfigurable dual-polarized antenna array with vertical coaxial feeding switches between S- and C-band states with full-band coverage. A 2(&)#215;2 S-band antenna array can be reconfigured to a 4(&)#215;4 C-band antenna array by activating/deactivating PIN diode switches. This antenna array shows 64.3%/66.7% FBW with 8.4/14.3 dBi maximum realized gain in the S-/C-band operating states, respectively. Finally, a reconfigurable antenna element covering three adjacent frequency bands is presented. The FBW of this tri-band antenna element is 75%/63%/26% in the S/C/X band state.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007373, ucf:52092
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007373
-
-
Title
-
ANTENNA-COUPLED TUNNEL DIODES FOR DUAL-BAND MILLIMETER-WAVE/INFRARED FOCAL-PLANE ARRAYS.
-
Creator
-
Abdel Rahman, Mohamed, Boreman, Glenn, University of Central Florida
-
Abstract / Description
-
The infrared and millimeter-wave portions of the spectrum both have their advantages for development of imaging systems. Because of the difference in wavelengths, infrared imagers offer inherently high resolution, while millimeter-wave systems have better penetration through atmospheric aerosols such as fog and smoke. Shared-aperture imaging systems employing a common focal-plane array that responds to both wavebands are desirable from the viewpoint of overall size and weight. We have...
Show moreThe infrared and millimeter-wave portions of the spectrum both have their advantages for development of imaging systems. Because of the difference in wavelengths, infrared imagers offer inherently high resolution, while millimeter-wave systems have better penetration through atmospheric aerosols such as fog and smoke. Shared-aperture imaging systems employing a common focal-plane array that responds to both wavebands are desirable from the viewpoint of overall size and weight. We have developed antenna-coupled sensors that respond simultaneously at 30 THz and at 94 GHz, utilizing electron-beam lithography. Slot-antenna designs were found to be particularly suitable for coupling radiation into metal-oxide-metal (MOM) tunnel diodes at both frequencies. The MOM diodes are fabricated in a layered structure of Ni-NiO-Ni, and act as rectifying contacts. With contact areas as low as 120 nm × 120 nm, these diodes have time constants commensurate with rectification at frequencies across the desired millimeter-wave and infrared bands. One challenge in the development of true focal-plane array imagers across this factor-of-300 bandwidth is that the optimum spatial sampling interval on the focal plane is different in both bands. We have demonstrated a focal plane with interleaved infrared and millimeter-wave sensors by fabricating infrared antennas in the ground plane of the millimeter-wave antenna. Measured performance data in both bands are presented for individual antenna-coupled sensors as well as for devices in the dual-band focal-plane-array format.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000305, ucf:46309
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000305
-
-
Title
-
INFRARED PHASED-ARRAY ANTENNA-COUPLED TUNNEL DIODES.
-
Creator
-
Slovick, Brian, Boreman, Glenn, University of Central Florida
-
Abstract / Description
-
Infrared (IR) dipole antenna-coupled metal-oxide-metal (MOM) tunnel diodes provide a unique detection mechanism that allows for determination of the polarization and wavelength of an optical field. By integrating the MOM diode into a phased-array antenna, the angle of arrival and degree of coherence of received IR radiation can be determined. The angular response characteristics of IR dipole antennas are determined by boundary conditions imposed by the surrounding dielectric or conductive...
Show moreInfrared (IR) dipole antenna-coupled metal-oxide-metal (MOM) tunnel diodes provide a unique detection mechanism that allows for determination of the polarization and wavelength of an optical field. By integrating the MOM diode into a phased-array antenna, the angle of arrival and degree of coherence of received IR radiation can be determined. The angular response characteristics of IR dipole antennas are determined by boundary conditions imposed by the surrounding dielectric or conductive environment on the radiated fields. To explore the influence of the substrate configuration, single dipole antennas are fabricated on both planar and hemispherical lens substrates. Measurements demonstrate that the angular response can be tailored by the thickness of the electrical isolation stand-off layer on which the detector is fabricated and/or the inclusion of a ground plane. Directional detection of IR radiation is achieved with a pair of dipole antennas coupled to a MOM diode through a coplanar strip transmission line. The direction of maximum angular response is altered by varying the position of the diode along the transmission line connecting the antenna elements. By fabricating the devices on a quarter wave layer above a ground plane, narrow beam widths of 35° full width at half maximum and reception angles of ± 50° are achievable with minimal side-lobe contributions. Phased-array antennas can also be used to assess the degree of coherence of a partially coherent field. For a two-element array, the degree of coherence is a measure of the correlation of electric fields received by the antennas as a function of the element separation.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003589, ucf:48926
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003589
-
-
Title
-
APPLICATION OF ANTENNA SYNTHESIS AND DIGITAL SIGNAL PROCESSING TECHNIQUES FOR ACTIVE MILLIMETER-WAVE IMAGING SYSTEMS.
-
Creator
-
Caba, Wilson, Boreman, Glenn, University of Central Florida
-
Abstract / Description
-
Millimeter-wave imaging has gathered attention in recent years for its ability to penetrate clothing, thin layers of soils, and certain construction materials. However, image quality remains a challenge that needs to be addressed. One way of improving image quality is by increasing the dimensions of the collecting aperture. A sparse array can be used to synthesize a larger aperture with a limited set of relatively small detectors. In this research we design, build, and test a test-bed having...
Show moreMillimeter-wave imaging has gathered attention in recent years for its ability to penetrate clothing, thin layers of soils, and certain construction materials. However, image quality remains a challenge that needs to be addressed. One way of improving image quality is by increasing the dimensions of the collecting aperture. A sparse array can be used to synthesize a larger aperture with a limited set of relatively small detectors. In this research we design, build, and test a test-bed having an active source at 94 GHz and an array of coherent detectors, mounted on arms that extend radially on a rotary table. Using this test bed a circular area with a maximum diameter of 900 mm can be scanned. The signal is down-converted using heterodyne receivers with digital in-phase and quadrature detection. Signal correlation is performed using the digitized data, which is stored for post-processing, electronic focusing, and image reconstruction. Near-field imaging using interferometric reconstructions is achieved using electronic focusing. Imaging tests show the ability of the system to generate imagery of concealed and unconcealed objects at distances between 400 and 700 mm. A study of the effects of redundant and non-redundant configurations on image quality for 4 common detector configurations is presented. In this document we show that an active sparse-aperture imaging system using digital correlators is a viable way to generate millimeter-wave images.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003406, ucf:48429
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003406
-
-
Title
-
Frequency-Reconfigurable Microstrip Patch and Cavity-Backed Slot ESPARs.
-
Creator
-
Ouyang, Wei, Gong, Xun, Vosoughi, Azadeh, Wahid, Parveen, Abdolvand, Reza, Kuebler, Stephen, University of Central Florida
-
Abstract / Description
-
Wireless communication systems have rapidly evolved over the past decade which has led to an explosion of mobile data traffic. Since more and more wireless devices and sensors are being connected, the transition from the current 4G/LTE mobile network to 5G is expected to happen within the next decade. In order to improve signal-to-noise ratio (SNR), system capacity, and link budget, beam steerable antenna arrays are desirable due to their advantage in spatial selectivity and high directivity....
Show moreWireless communication systems have rapidly evolved over the past decade which has led to an explosion of mobile data traffic. Since more and more wireless devices and sensors are being connected, the transition from the current 4G/LTE mobile network to 5G is expected to happen within the next decade. In order to improve signal-to-noise ratio (SNR), system capacity, and link budget, beam steerable antenna arrays are desirable due to their advantage in spatial selectivity and high directivity. Electronically steerable parasitic array radiator (ESPAR) that can achieve low-cost continuously beamsteering using varactor diodes have attracted a lot of attention. This dissertation explores bandwidth enhancement of the ESPAR using frequency-reconfigurable microstrip patch and cavity-backed slot (CBS) antennas. In chapter 2, an ESPAR of three closely-coupled rectangular patch elements that do not use phase shifters is presented; the beamsteering is realized by tunable reactive loads which are used to control the mutual coupling between the elements. Additional loading varactors are strategically placed on the radiating edge of all the antenna elements to achieve a 15% continuous frequency tuning range while simultaneously preserving the beamsteering capability at each operating frequency. Therefore, this frequency-reconfigurable ESPAR is able to provide spectrum diversity in addition to the spatial diversity inherent in a frequency-fixed ESPAR. A prototype of the patch ESPAR is fabricated and demonstrated to operate from 0.87 to 1.02 GHz with an instantaneous fractional bandwidth (FBW) of ~1%. At each operating frequency, this ESPAR is able to scan from -20 to +20 degrees in the H plane. However, the beamsteering of the patch ESPAR is limited in the H-plane and its instantaneous S11 fractional bandwidth (FBW) is very narrow. This dissertation also explores how to achieve 2-D beamsteering with enhanced FBW using CBS antennas. A 20-element cavity-backed slot antenna array is designed and fabricated based on a CBS ESPAR cross subarray in chapter 5. This ESPAR array is able to steer the main beam from +45 degrees to -45 degrees in the E plane and from +40 degrees to -40 degrees in the H plane, respectively, without grating lobes in either plane. The impedance matching is maintained below -10 dB from 6.0 to 6.4 GHz (6.4% fractional bandwidth) at all scan angles. In addition, the CBS ESPAR exhibits minimum beam squint at all scan angles within the impedance matching bandwidth. This array successfully demonstrates the cost savings and associated reduction in the required number of phase shifters in the RF front end by employing ESPAR technology.
Show less
-
Date Issued
-
2019
-
Identifier
-
CFE0007699, ucf:52426
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007699
-
-
Title
-
SAW REFLECTIVE TRANSDUCERS AND ANTENNAS FOR ORTHOGONAL FREQUENCY CODED SAW SENSORS.
-
Creator
-
Santos, Bianca Maria, Malocha, Donald, University of Central Florida
-
Abstract / Description
-
Passive sensors that vary its impedance per measured parameter may be used with surface acoustic wave (SAW) reflective transducers (SRT) for wireless acquisition of the measurand. The device is composed of two transducers, where one, which may be attached to an antenna, is used to launch the wave within the device substrate, and the other is where the sensor load is attached to. The latter is able to reflect the incident wave. How much power is reflected is determined by the attached sensor...
Show morePassive sensors that vary its impedance per measured parameter may be used with surface acoustic wave (SAW) reflective transducers (SRT) for wireless acquisition of the measurand. The device is composed of two transducers, where one, which may be attached to an antenna, is used to launch the wave within the device substrate, and the other is where the sensor load is attached to. The latter is able to reflect the incident wave. How much power is reflected is determined by the attached sensor load. Amplitude variations as well as peak frequency variations of the SRT reflectivity response are explored in this thesis. SAW passive temperature sensors with an orthogonal frequency coded (OFC) time response were previously investigated and prove to be ideal for use in harsh environments. Each sensor is distinguishable from the other due to the OFC code embedded within its time response. However, this coding technique poses a difficulty in designing antennas for the sensor due to its inherently wide bandwidth, and capacitive, non-uniform input impedance. This work covers antenna design and testing for the 250MHz wireless temperature acquisition prototype with a 28% fractional bandwidth, and for the 912MHz system which has 10% fractional bandwidth. Apart from the tag, antennas for the transmitter and receiver were designed for 50 Ohm matching with the required bandwidth maintained. Wireless temperature acquisition runs for the 250MHz prototype were successfully performed and show good agreement with measurements made by a thermocouple. Since a transceiver for the 912MHz system is not complete, the performance of the antennas was gauged by observing the signal transmitted wirelessly by the SAW tag and by comparing this with the sensor time response measured directly by a vector network analyzer.
Show less
-
Date Issued
-
2009
-
Identifier
-
CFE0002649, ucf:48199
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002649
-
-
Title
-
BEAM-STEERABLE AND RECONFIGURABLE REFLECTARRAY ANTENNAS FOR HIGH GAIN SPACE APPLICATIONS.
-
Creator
-
Karnati, Kalyan, Gong, Xun, Wahid, Parveen, Jones, W Linwood, Wu, Thomas, Cho, Hyoung Jin, University of Central Florida
-
Abstract / Description
-
Reflectarray antennas uniquely combine the advantages of parabolic reflectors and phased array antennas. Comprised of planar structures similar to phased arrays and utilizing quasi-optical excitation similar to parabolic reflectors, reflectarray antennas provide beam steering without the need of complex and lossy feed networks. Chapter 1 discusses the basic theory of reflectarray and its design. A brief summary of previous work and current research status is also presented. The inherent...
Show moreReflectarray antennas uniquely combine the advantages of parabolic reflectors and phased array antennas. Comprised of planar structures similar to phased arrays and utilizing quasi-optical excitation similar to parabolic reflectors, reflectarray antennas provide beam steering without the need of complex and lossy feed networks. Chapter 1 discusses the basic theory of reflectarray and its design. A brief summary of previous work and current research status is also presented. The inherent advantages and drawbacks of the reflectarray are discussed.In chapter 2, a novel theoretical approach to extract the reflection coefficient of reflectarray unit cells is developed. The approach is applied to single-resonance unit cell elements under normal and waveguide incidences. The developed theory is also utilized to understand the difference between the TEM and TE10 mode of excitation. Using this theory, effects of different physical parameters on reflection properties of unit cells are studied without the need of full-wave simulations. Detailed analysis is performed for Ka-band reflectarray unit cells and verified by full-wave simulations. In addition, an approach to extract the Q factors using full-wave simulations is also presented. Lastly, a detailed study on the effects of inter-element spacing is discussed.Q factor theory discussed in chapter 2 is extended to account for the varying incidence angles and polarizations in chapter 3 utilizing Floquet modes. Emphasis is laid on elements located on planes where extremities in performance tend to occur. The antenna element properties are assessed in terms of maximum reflection loss and slope of the reflection phase. A thorough analysis is performed at Ka band and the results obtained are verified using full-wave simulations. Reflection coefficients over a 749-element reflectarray aperture for a broadside radiation pattern are presented for a couple of cases and the effects of coupling conditions in conjunction with incidence angles are demonstrated. The presented theory provides explicit physical intuition and guidelines for efficient and accurate reflectarray design.In chapter 4, tunable reflectarray elements capacitively loaded with Barium Strontium Titanate (BST) thin film are shown. The effects of substrate thickness, operating frequency and deposition pressure are shown utilizing coupling conditions and the performance is optimized. To ensure minimum affects from biasing, optimized biasing schemes are discussed. The proposed unit cells are fabricated and measured, demonstrating the reconfigurability by varying the applied E-field. To demonstrate the concept, a 45 element array is also designed and fabricated. Using anechoic chamber measurements, far-field patterns are obtained and a beam scan up to 25o is shown on the E-plane.Overall, novel theoretical approaches to analyze the reflection properties of the reflectarray elements using Q factors are developed. The proposed theoretical models provide valuable physical insight utilizing coupling conditions and aid in efficient reflectarray design. In addition, for the first time a continuously tunable reflectarray operating at Ka-band is presented using BST technology. Due to monolithic integration, the technique can be extended to higher frequencies such as V-band and above.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006040, ucf:50963
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006040
-
-
Title
-
ANTENNA-COUPLED INFRARED AND MILLIMETER-WAVE DETECTORS: FABRICATION, MEASUREMENT AND OPTIMIZATION.
-
Creator
-
Middleton, Charles, Boreman, Glenn, University of Central Florida
-
Abstract / Description
-
Antenna-coupled detectors provide uncooled, cost-effective solutions for infrared and millimeter-wave imaging. This work describes the design, fabrication, measurement, and optimization of several types of antenna-coupled detectors for LWIR (8 - 12 µm) and 94 GHz radiation. Two types of millimeter-wave antenna-coupled detectors were fabricated and tested: a slot antenna coupled to a bolometer, and a patch antenna coupled to a SiC Schottky diode. Electromagnetic modeling of the antennas...
Show moreAntenna-coupled detectors provide uncooled, cost-effective solutions for infrared and millimeter-wave imaging. This work describes the design, fabrication, measurement, and optimization of several types of antenna-coupled detectors for LWIR (8 - 12 µm) and 94 GHz radiation. Two types of millimeter-wave antenna-coupled detectors were fabricated and tested: a slot antenna coupled to a bolometer, and a patch antenna coupled to a SiC Schottky diode. Electromagnetic modeling of the antennas helped guide the design of antennas with better impedance matching to the detectors. Schottky diodes are discussed as detectors for millimeter-wave and infrared radiation, with the goal of increasing the cutoff frequency to allow infrared detection. The magnitude of response of antenna-coupled bolometric detectors to infrared radiation is affected by the thermal-conduction properties of the sensor structure. Two fabrication processes were developed to improve the thermal isolation of the antenna-coupled bolometer from its substrate. The first process creates a membrane beneath the device. Measured results show a factor of 100 increase in responsivity over an identical device without a membrane. The second process thermally isolates the device from its substrate by suspending the metallic structure in air. Several factors for optimization of infrared antenna-coupled detectors are investigated. The complex dielectric function of the metal from which the antenna is constructed can affect the performance of the device. The use of a ground plane and dielectric standoff layer beneath the antenna can increase the sensor responsivity. Dielectric material properties and thicknesses are considered, and incorporated in device simulations. Finally, a potential fabrication process is presented for via connections from the antenna-coupled detector through a ground plane to bond pads to mitigate the effect of bias lines on antenna behavior.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001242, ucf:46908
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001242
-
-
Title
-
Antenna-coupled infrared focal plane array.
-
Creator
-
Gonzalez, Francisco Javier, Boreman, Glenn D., Engineering and Computer Sciences
-
Abstract / Description
-
University of Central Florida College of Engineering Thesis; In this dissertation a new type of infared focal plan array (IR FPA) was investigated, consisting of antenna-coupled microbolometer fabricated using electron-beam lithography. Four different antenna designs were experimentally demonstrated at 10-micron wavelength: dipole, bowtie, square-spiral, and log-periodic. The main differences between these antenna types were their bandwidth, collection area, angular reception pattern, and...
Show moreUniversity of Central Florida College of Engineering Thesis; In this dissertation a new type of infared focal plan array (IR FPA) was investigated, consisting of antenna-coupled microbolometer fabricated using electron-beam lithography. Four different antenna designs were experimentally demonstrated at 10-micron wavelength: dipole, bowtie, square-spiral, and log-periodic. The main differences between these antenna types were their bandwidth, collection area, angular reception pattern, and polarization. To provide pixel collection areas commensurate with typical IR FPA requirements, two configuration were investigated: a two-dimensional serpentine interconnection of individual IR antennas, and a Fresnel-zone-plate (FZP) coupled to a single-element antenna. Optimum spacing conditions for the two-dimensional interconnect were developed. Increased sensitivity was demonstrated using a FZP-coupled design. In general, it was found that the configuration of the antenna substrate material was critical for optimization of sensitivity. The best results were obtained using this membranes of silicon nitride to enhance the thermal isolation of the antenna-coupled bolometers. In addition, choice of the bolometer material was also important, with the best results obtained using vanadium oxide. Using optimum choices for all parameters, normalized sensitivity (D*) values in the range of mid 10^8 [cm√Hz/W] were demonstrated for antenna-coupled IR sensors, and directions for further improvements were identified. Successful integration of antenna-coupled pixels with commercial readout integrated circuits was also demonstrated.
Show less
-
Date Issued
-
2003
-
Identifier
-
CFR0011595, ucf:53049
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFR0011595
Pages