Current Search: before and after (x)
View All Items
- Title
- RIGHT TURN SPLIT: A NEW DESIGN TO ALLEVIATE WEAVING ON ARTERIAL STREETS.
- Creator
-
Shaaban, Khaled, Radwan, Essam, University of Central Florida
- Abstract / Description
-
While weaving maneuvers occur on every type of roadway, most studies have focused on freeway maneuvers. Weaving occurring on non-freeway facilities, such as arterial streets, can cause significant operational problems. Arterial streets weaving typically occur when vehicles coming from a side street at an upstream intersection attempt to enter the main street from one side to reach access points on the opposite site at a downstream intersection by crossing one or more lanes. This dissertation...
Show moreWhile weaving maneuvers occur on every type of roadway, most studies have focused on freeway maneuvers. Weaving occurring on non-freeway facilities, such as arterial streets, can cause significant operational problems. Arterial streets weaving typically occur when vehicles coming from a side street at an upstream intersection attempt to enter the main street from one side to reach access points on the opposite site at a downstream intersection by crossing one or more lanes. This dissertation investigates the type of problems occurring on arterial streets due to the weaving movements and recommends a new design to alleviate weaving on arterial streets. Firstly, the dissertation examined the different weaving movements occurring between two close-spaced intersections at two sites in Florida and explained the breakdown conditions caused by the weaving movements at the two sites. Secondly, the dissertation proposed a new design, Right Turn Split (RTS), to alleviate the delay caused by the weaving movements. The new design proposed separating the worst weaving movement entering the arterial from the other movements and providing a separate path for this movement. The new method is easy to implement and does not require much right of way. Thirdly, the dissertation compared two microscopic models, SimTraffic and VISSIM, to choose the most suitable model to be used to study the operational benefits of the RTS design. Based on the results of the comparison, it was decided to use SimTraffic for the analysis. Fourthly, the dissertation proposed a new calibration and validation procedure for microscopic simulation models. The procedure was applied on SimTraffic using the traffic data from the two studied sites. The proposed procedure appeared to be properly calibrating and validating the SimTraffic simulation model. Finally, the calibrated and validated model was used to study the operational benefits of the RTS design. Using a wide range of geometric and volume conditions, 729 before and after pairs were created to compare the delay of similar scenarios before and after applying the RTS design. The results were analyzed graphically and statistically. The findings of the analysis showed that the RTS design provided lower delay on the arterial street than the original conditions.
Show less - Date Issued
- 2005
- Identifier
- CFE0000402, ucf:46346
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000402
- Title
- SAFETY EFFECTS OF TRAFFIC SIGNAL INSTALLATIONS ON STATE ROAD INTERSECTIONS IN NORTHEAST FLORIDA.
- Creator
-
LeDew, Christopher, Abdel-Aty, Mohamed, University of Central Florida
- Abstract / Description
-
The purpose of this thesis is to explore how the installations of traffic signals affect crash experience at intersections, to identify those factors which help predict crashes after a signal is installed, and to develop a crash prediction model. It is the intent of this thesis to supplement the Manual on Uniform Traffic Control Devices Signal Warrant procedure and aid the traffic engineer in the signal installation decision making process. Crash data, as well as operational and geometric...
Show moreThe purpose of this thesis is to explore how the installations of traffic signals affect crash experience at intersections, to identify those factors which help predict crashes after a signal is installed, and to develop a crash prediction model. It is the intent of this thesis to supplement the Manual on Uniform Traffic Control Devices Signal Warrant procedure and aid the traffic engineer in the signal installation decision making process. Crash data, as well as operational and geometric factors were examined for 32 state road intersections in the northeast Florida area before and after signal installation. Signal warrant studies were used as sources for traffic volumes, geometric information and crash history, before signal installation. The Florida Department of Transportation's Crash Analysis Reporting System (CARS) was used to gather crash data for the time period after signal installation. On average, the 32 intersections experienced a 12% increase in the total number of crashes and a 26% reduction in crash rate after signals were installed. The change in the number of crashes was not significant, but the rate change was significant with 90% confidence. Angle crash frequency dropped by 60% and the angle crash rate dropped by 66%, both are significant. Left-turn crashes dropped by 8% and their rate by 16%, although neither was significant. Rear-end crashes increased by 86% and the rear-end crash rate decreased by 5%. Neither of these changes was statistically significant. When crash severity was examined, it was found that the number of injury crashes increased by 64.8% and the rate by only 0.02%. Neither change was significant. Both the number of fatal crashes and the rate decreased by 100% and were significant. Property Damage Only (PDO) crashes increased by 96%, after signalization, but this change was not significant. The PDO rate, however, decreased by 46.5% and is significant. Operational factors such as AADT, turning movement counts, and speed limits; and geometric factors such as medians, turn lanes and numbers of lanes were considered to determine their effect on crashes at signalized intersections. Smaller roads, with low AADT, fewer lanes, and a rural character were found to benefit from signalization more than busier urbanized roads, in terms of crash rate reduction. The AADT, roadway cross section, number of lanes, medians, speed limit and left turn volume were all found to be important factors influencing crash rates. This thesis recommends: 1) the use of crash prediction models to supplement the MUTCD Crash Warrant, 2) the addition of a left-turn warrant to the MUTCD signal warranting procedure, and 3) development of an intersection database containing crash data as well as operational and geometric information to aid in future research.
Show less - Date Issued
- 2006
- Identifier
- CFE0001335, ucf:46972
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001335
- Title
- PROVIDING A BETTER UNDERSTANDING FOR THE MOTORIST BEHAVIOR TOWARDS SIGNAL CHANGE.
- Creator
-
Elmitiny, Noor, Radwan, Essam, University of Central Florida
- Abstract / Description
-
This research explores the red light running phenomena and offer a better understanding of the factors associated with it. The red light running is a type of traffic violation that can lead to angle crash and the most common counter measure is installing a red light running cameras. Red light running cameras some time can reduce the rates of red light running but because of the increased worry of the public towards crossing the intersection it can cause an increase in rear end crashes. Also...
Show moreThis research explores the red light running phenomena and offer a better understanding of the factors associated with it. The red light running is a type of traffic violation that can lead to angle crash and the most common counter measure is installing a red light running cameras. Red light running cameras some time can reduce the rates of red light running but because of the increased worry of the public towards crossing the intersection it can cause an increase in rear end crashes. Also the public opinion of the red light running cameras is that they are a revenue generator for the local counties and not a concern of public safety. Further more, they consider this type of enforcement as violation of privacy. There was two ways to collect the data needed for the research. One way is through a tripod cameras setup temporarily placed at the intersection. This setup can collect individual vehicles caught in the change phase with specific information about their reactions and conditions. This required extensive manual analysis for the recorded videos plus data could not be collected during adverse weather conditions. The second way was using traffic monitoring cameras permanently located at the site to collect red light running information and the simultaneous traffic conditions. This system offered more extensive information since the cameras monitor the traffic 24/7 collecting data directly. On the other hand this system lacked the ability to identify the circumstances associated with individual red light running incidents. The research team finally decided to use the two methods to study the red light running phenomena aiming to combine the benefits of the two systems. During the research the team conducted an experiment to test a red light running countermeasure in the field and evaluate the public reaction and usage of this countermeasure. The marking was previously tested in a driving simulator and proved to be successful in helping the drivers make better stop/go decisions thus reducing red light running rates without increasing the rear-end crashes. The experiment was divided into three phases; before marking installation called "before", after marking installation called "after', and following a media campaign designed to inform the public about the use of the marking the third phase called "after media" The behavior study that aimed at analyzing the motorist reactions toward the signal change interval identified factors which contributed to red light running. There important factors were: distance from the stop bar, speed of traffic, leading or following in the traffic, vehicle type. It was found that a driver is more likely to run red light following another vehicle in the intersection. Also the speeding vehicles can clear the intersection faster thus got less involved in red light running violations. The proposed "Signal Ahead" marking was found to have a very good potential as a red light running counter measure. The red light running rates in the test intersection dropped from 53 RLR/hr/1000veh for the "before" phase, to 24 RLR/hr/1000veh for the "after media" phase. The marking after media analysis period found that the marking can help the driver make stop/go decision as the dilemma zone decreased by 50 ft between the "before" and the "after media" periods. Analysis of the traffic condition associated with the red light running it revealed that relation between the traffic conditions and the red light running is non-linear, with some interactions between factors. The most important factors included in the model were: traffic volume, average speed of traffic, the percentage of green time, the percentage of heavy vehicles, the interaction between traffic volume and percentage of heavy vehicles. The most interesting finding was the interaction between the volume and the percent of heavy vehicles. As the volume increased the effect of the heavy vehicles reversed from reducing the red light running to increasing the red light. This finding may be attributed to the sight blocking that happens when a driver of a passenger car follows a larger heavy vehicle, and can be also explained by the potential frustration experienced by the motorist resulting from driving behind a bigger vehicle.
Show less - Date Issued
- 2009
- Identifier
- CFE0002757, ucf:48118
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002757
- Title
- EVALUATING THE IMPACT OF OOCEA'S DYMANIC MESSAGE SIGNS (DMS) ON TRAVELERS' EXPERIENCE USING A PRE AND POST-DEPLOYMENT SURVEY.
- Creator
-
Flick, Jason, Al-Deek, Haitham, University of Central Florida
- Abstract / Description
-
The purpose of this thesis was to evaluate the impact of dynamic message signs (DMS) on the Orlando-Orange County Expressway Authority (OOCEA) toll road network using a Pre and Post-Deployment DMS Survey (henceforth referred to as "pre and post-deployment survey") analysis. DMS are electronic traffic signs used on roadways to give travelers information about travel times, traffic congestion, accidents, disabled vehicles, AMBER alerts, and special events. The particular DMS referred to in this...
Show moreThe purpose of this thesis was to evaluate the impact of dynamic message signs (DMS) on the Orlando-Orange County Expressway Authority (OOCEA) toll road network using a Pre and Post-Deployment DMS Survey (henceforth referred to as "pre and post-deployment survey") analysis. DMS are electronic traffic signs used on roadways to give travelers information about travel times, traffic congestion, accidents, disabled vehicles, AMBER alerts, and special events. The particular DMS referred to in this study are large rectangular signs installed over the travel lanes and these are not the portable trailer mount signs. The OOCEA have been working over the past two years to add several fixed DMS on their toll road network. At the time of the pre-deployment survey, only one DMS was installed on the OOCEA toll road network. At the time of the post-deployment survey, a total of 30 DMS were up and running on the OOCEA toll road network. Since most of the travelers on the OOCEA toll roads are from Orange, Osceola, and Seminole counties, this study was limited to these counties. This thesis documents the results and comparisons between the pre and post-deployment survey analysis. The instrument used to analyze the travelers' perception of DMS was a survey that utilized computer aided telephone interviews. The pre-deployment survey was conducted during early November of 2006, and the post-deployment survey was conducted during the month of May, 2008. Questions pertaining to the acknowledgement of DMS on the OOCEA toll roads, satisfaction with travel information provided on the network, formatting of the messages, satisfaction with different types of messages, diversion questions (Revealed and Stated preferences), and classification/socioeconomic questions (such as age, education, most traveled toll road, county of residence, and length of residency) were asked to the respondents. The results of both the pre and post-deployment surveys are discussed in this thesis, but it should be noted that the more telling results are those of the post-deployment survey. The results of the post-deployment survey show the complete picture of the impact of DMS on travelers' experience on the OOCEA toll road network. The pre-deployment results are included to show an increase or decrease in certain aspects of travel experience with relation to DMS. The results of the pre-deployment analysis showed that 54.4% of the OOCEA travelers recalled seeing DMS on the network, while a total of 63.93% of the OOCEA travelers recalled seeing DMS during the post-deployment analysis. This showed an increase of almost 10% between the two surveys demonstrating the people are becoming more aware of DMS on the OOCEA toll road network. The respondents commonly agreed that the DMS were helpful for providing information about hazardous conditions, and that the DMS are easy to read. Also, upon further research it was found that between the pre and post-deployment surveys the travelers' satisfaction with special event information provided on DMS and travel time accuracy on DMS increased significantly. With respect to formatting of the DMS, the following methods were preferred by the majority of respondents in both the pre and post-deployment surveys: Steady Message as a default DMS message format Flashing Message for abnormal traffic information (94% of respondents would like to be notified of abnormal traffic information) State road number to show which roadway (for Colonial SR 50, Semoran SR 436 and Alafaya SR 434) "I-Drive" is a good abbreviation for International Drive If the distance to the international airport is shown on a DMS it thought to be the distance to the airport exit The results from the binary logit model for "satisfaction with travel information provided on OOCEA toll road network" displayed the significant variables that explained the likelihood of the traveler being satisfied. This satisfaction model was based on respondents who showed a prior knowledge of DMS on OOCEA toll roads. With the use of a pooled model (satisfaction model with a total of 1775 responses 816 from pre-deployment and 959 from post-deployment), it was shown that there was no statistical change between the pre and post-deployment satisfaction based on variables thought to be theoretically relevant. The results from the comparison between the pre and post-deployment satisfaction models showed that many of the coefficients of the variables showed a significant change. Although some of the variables were statistically insignificant in one of the two survey model results: Either the pre or post-deployment model, it was still shown that every variable was significant in at least one of the two models. The coefficient for the variable corresponding to DMS accuracy showed a significantly lower value in the post-deployment model. The coefficient for the variable "DMS was helpful for providing special event information" showed a significantly higher value in the post-deployment model. The final post-deployment diversion model was based on a total of 732 responses who answered that they had experienced congestion in the past 6 months. Based on this final post-deployment diversion model, travelers who had stated that their most frequently traveled toll road was either SR 408 or SR 417 were more likely to divert. Also, travelers who stated that they would divert in the case of abnormal travel times displayed on DMS or stated that a DMS influenced their response to congestion showed a higher likelihood of diversion. These two variables were added between the pre and post-deployment surveys. It is also beneficial to note that travelers who stated they would divert in a fictitious congestion situation of at least 30 minutes of delay were more likely to divert. This shows that they do not contradict themselves in their responses to Revealed Preference and Stated Preference diversion situations. Based on a comparison between pre and post-deployment models containing similar variables, commuters were more likely to stay on the toll road everything else being equal to the base case. Also, it was shown that in the post-deployment model the respondents traveling on SR 408 and SR 417 were more likely to divert, but in the pre-deployment model only the respondents traveling on SR 408 were more likely to divert. This is an expected result since during the pre-deployment survey only one DMS was located on SR 408, and during the post-deployment survey there were DMS located on all toll roads. Also, an interesting result to be noted is that in the post-deployment survey, commuters who paid tolls with E-pass were more likely to stay on the toll road than commuters who paid tolls with cash. The implications for implementation of these results are discussed in this thesis. DMS should be formatted as a flashing message for abnormal traffic situations and the state road number should be used to identify a roadway. DMS messages should pertain to information on roadway hazards when necessary because it was found that travelers find it important to be informed on events that are related to their personal safety. The travel time accuracy on DMS was shown to be significant for traveler information satisfaction because if the travelers observe inaccurate travel times on DMS, they may not trust the validity of future messages. Finally, it is important to meet the travelers' preferences and concerns for DMS.
Show less - Date Issued
- 2008
- Identifier
- CFE0002295, ucf:47862
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002295
- Title
- Evaluation and Modeling of the Safety of Open Road Tolling System.
- Creator
-
Abuzwidah, Muamer, Abdel-Aty, Mohamed, Radwan, Ahmed, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
The goal of this thesis is to examine the traffic safety impact of upgrading Toll Plazas (TP) to Open Road Tolling (ORT). The ORT could enhance safety but could also pose some traffic safety concerns at Toll plazas. Crashes from eight years were investigated by evaluating the crash data before and after the implementation of the ORT.The study was conducted by using two approaches: 1) a simple before and after study and with a comparison group; 2) a modeling effort to help understand the...
Show moreThe goal of this thesis is to examine the traffic safety impact of upgrading Toll Plazas (TP) to Open Road Tolling (ORT). The ORT could enhance safety but could also pose some traffic safety concerns at Toll plazas. Crashes from eight years were investigated by evaluating the crash data before and after the implementation of the ORT.The study was conducted by using two approaches: 1) a simple before and after study and with a comparison group; 2) a modeling effort to help understand the relationship between the crash frequency and several important factors and circumstances such as injury severity, collision types, average daily traffic (ADT) and Toll plaza characteristics. The study investigated 11 Toll plazas on State Roads 408, 417, 528 and 429 that have been changed to the ORT design. Several maps showing the Toll plazas and identifying the relevant crash locations were generated. Negative Binomial (NB), Log Linear model and two-way contingency table were examined. Two log-linear models with three variables in each model with all possible two-way interactions were developed. Categorical data analysis of the 2009 and 2010 crash dataset was performed. In order to compare the differences in response between the crash frequency and a particular crash-related variable, odds ratios were computed. The effects of crash frequency and crash-related factors were examined, and interactions among them were considered. The results indicated significant relationships between the crash frequency and ADT, crash type and driver age.It is worth mentioning that the expressway network understudy was continuously experiencing constructions throughout the study period. There is indication that ORT reduced the total crash number; also there is indication of changing the crash types and locations; and the majority of crashes occurred at the diverging and merging areas and resulted in more severe crashes. More data may be needed to confirm these results especially after all constructions and upgrades are made.The Implementation of open road tolling, the locations of Toll plazas, Automatic Vehicle Identification (AVI) subscription rate, traffic demand, and plaza geometry all may have a high influence on traffic safety concerns at Toll plazas, as concluded from the negative Binomial Model's results. The changing of sign locations, reducing the speed limit, installing variable message signs, configuring plazas properly, and other considerations may be the solution to overcome the potential safety problems in the vicinity of Toll plazas.The change of design to ORT was proven to be an excellent solution to several traffic operation problems, including reducing congestion and improving traffic flow and capacity at Toll plazas. However, addressing safety concerns at Toll plazas should take priority.
Show less - Date Issued
- 2011
- Identifier
- CFE0004466, ucf:49330
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004466
- Title
- TRAFFIC SAFETY ASSESSMENT OF DIFFERENT TOLL COLLECTION SYSTEMS ON EXPRESSWAYS USING MULTIPLE ANALYTICAL TECHNIQUES.
- Creator
-
Abuzwidah, Muamer, Abdel-Aty, Mohamed, Radwan, Essam, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
Traffic safety has been considered one of the most important issues in the transportation field. Crashes have caused extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence. With these consistent efforts, both fatalities and fatality rates from road traffic crashes in many countries have been steadily declining over the last ten...
Show moreTraffic safety has been considered one of the most important issues in the transportation field. Crashes have caused extensive human and economic losses. With the objective of reducing crash occurrence and alleviating crash injury severity, major efforts have been dedicated to reveal the hazardous factors that affect crash occurrence. With these consistent efforts, both fatalities and fatality rates from road traffic crashes in many countries have been steadily declining over the last ten years. Nevertheless, according to the World Health Organization, the world still lost 1.24 million lives from road traffic crashes in the year of 2013. And without action, traffic crashes on the roads network are predicted to result in deaths of around 1.9 million people, and up to 50 million more people suffer non-fatal injuries annually, with many incurring a disability as a result of their injury by the year 2020. To meet the transportation needs, the use of expressways (toll roads) has risen dramatically in many countries in the past decade. In fact, freeways and expressways are considered an important part of any successful transportation system. These facilities carry the majority of daily trips on the transportation network. Although expressways offer high level of service, and are considered the safest among other types of roads, traditional toll collection systems may have both safety and operational challenges. The traditional toll plazas still experience many crashes, many of which are severe. Therefore, it becomes more important to evaluate the traffic safety impacts of using different tolling systems. The main focus of the research in this dissertation is to provide an up-to-date safety impact of using different toll collection systems, as well as providing safety guidelines for these facilities to promote safety and enhance mobility on expressways. In this study, an extensive data collection was conducted that included one hundred mainline toll plazas located on approximately 750 miles of expressways in Florida. Multiple sources of data available online maintained by Florida Department of Transportation were utilized to identify traffic, geometric and geographic characteristics of the locations as well as investigating and determination of the most complete and accurate data. Different methods of observational before-after and Cross-Sectional techniques were used to evaluate the safety effectiveness of applying different treatments on expressways. The Before-After method includes Na(&)#239;ve Before-After, Before-After with Comparison Group, and Before-After with Empirical Bayesian. A set of Safety Performance Functions (SPFs) which predict crash frequency as a function of explanatory variables were developed at the aggregate level using crash data and the corresponding exposure and risk factors. Results of the aggregate traffic safety analysis can be used to identify the hazardous locations (hot spots) such as traditional toll plazas, and also to predict crash frequency for untreated sites in the after period in the Before-After with EB method or derive Crash Modification Factors (CMF) for the treatment using the Cross-Sectional method. This type of analysis is usually used to improve geometric characteristics and mainly focus on discovering the risk factors that are related to the total crash frequency, specific crash type, and/or different crash severity levels. Both simple SPFs (with traffic volume only as an explanatory variable) and full SPFs (with traffic volume and additional explanatory variable(s)) were used to estimate the CMFs and only CMFs with lower standard error were recommended.The results of this study proved that safety effectiveness was significantly improved across all locations that were upgraded from Traditional Mainline Toll Plazas (TMTP) to the Hybrid Mainline Toll Plazas (HMTP) system. This treatment significantly reduced total, Fatal-and-Injury (F+I), and Rear-End crashes by 47, 46 and 65 percent, respectively. Moreover, this study examined the traffic safety impact of using different designs, and diverge-and-merge areas of the HMTP. This design combines either express Open Road Tolling (ORT) lanes on the mainline and separate traditional toll collection to the side (design-1), or traditional toll collection on the mainline and separate ORT lanes to the side (design-2). It was also proven that there is a significant difference between these designs, and there is an indication that design-1 is safer and the majority of crashes occurred at diverge-and-merge areas before and after these facilities. However, design-2 could be a good temporary design at locations that have low prepaid transponder (Electronic Toll Collection (ETC)) users. In other words, it is dependent upon the percentage of the ETC users. As this percentage increases, more traffic will need to diverge and merge; thus, this design becomes riskier. In addition, the results indicated significant relationships between the crash frequency and toll plaza types, annual average daily traffic, and drivers' age. The analysis showed that the conversion from TMTP to the All-Electronic Toll Collection (AETC) system resulted in an average reduction of 77, 76, and 67 percent for total, F+I, and Property Damage Only (PDO) crashes, respectively; for rear end and Lane Change Related (LCR) crashes the average reductions were 81 and 75 percent, respectively. The conversion from HMTP to AETC system enhanced traffic safety by reducing crashes by an average of 23, 29 and 19 percent for total, F+I, and PDO crashes; also, for rear end and LCR crashes, the average reductions were 15 and 21 percent, respectively. Based on these results, the use of AETC system changed toll plazas from the highest risk sections on Expressways to be similar to regular segments. Therefore, it can be concluded that the use of AETC system was proven to be an excellent solution to several traffic operations as well as environmental and economic problems. For those agencies that cannot adopt the HMTP and the AETC systems, improving traffic safety at traditional toll plazas should take a priority.This study also evaluates the safety effectiveness of the implementation of High-Occupancy Toll lanes (HOT Lanes) as well as adding roadway lighting to expressways. The results showed that there were no significant impact of the implementation of HOT lanes on the roadway segment as a whole (HOT and Regular Lanes combined). But there was a significant difference between the regular lanes and the HOT lanes at the same roadway segment; the crash count increased at the regular lanes and decreased at the HOT lanes. It was found that the total and F+I crashes were reduced at the HOT lanes by an average of 25 and 45 percent, respectively. This may be attributable to the fact that the HOT lanes became a highway within a highway. Moreover adding roadway lighting has significantly improved traffic safety on the expressways by reducing the night crashes by approximately 35 percent.Overall, the proposed analyses of the safety effectiveness of using different toll collection systems are useful in providing expressway authorities with detailed information on where countermeasures must be implemented. This study provided for the first time an up-to-date safety impact of using different toll collection systems, also developed safety guidelines for these systems which would be useful for practitioners and roadway users.
Show less - Date Issued
- 2014
- Identifier
- CFE0005751, ucf:50100
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005751