Current Search: chirped pulse amplification (x)
View All Items
- Title
- Development of Thulium Fiber Lasers for High Average Power and High Peak Power Operation.
- Creator
-
Sims, Robert, Richardson, Martin, Schulzgen, Axel, Delfyett, Peter, Chow, Louis, University of Central Florida
- Abstract / Description
-
High power thulium fiber lasers are useful for a number of applications in both continuous-wave and pulsed operating regimes. The use of thulium as a dopant has recently gained interest due to its large bandwidth, possibility of high efficiency, possibility of high power and long wavelength ~1.8 (-) 2.1 ?m. The longer emission wavelength of Tm-doped fiber lasers compared to Yb- and/or Er-doped fiber lasers creates the possibility for higher peak power operation due to the larger nonlinear...
Show moreHigh power thulium fiber lasers are useful for a number of applications in both continuous-wave and pulsed operating regimes. The use of thulium as a dopant has recently gained interest due to its large bandwidth, possibility of high efficiency, possibility of high power and long wavelength ~1.8 (-) 2.1 ?m. The longer emission wavelength of Tm-doped fiber lasers compared to Yb- and/or Er-doped fiber lasers creates the possibility for higher peak power operation due to the larger nonlinear thresholds and reduced nonlinear phase accumulation. One primary interest in Tm-doped fiber lasers has been to scale to high average powers; however, the thermal and mechanical constraints of the fiber limit the average power out of a single-fiber aperture. One method to overcome the constraints of a single laser aperture is to spectrally combine the output from multiple lasers operating with different wavelengths into a single beam. In this thesis, results will be presented on the development of three polarized 100 W level laser systems that were wavelength stabilized for SBC. In addition to the development of the laser channels, the beams were combined using bandpass filters to achieve a single near diffraction-limited output.Concurrently, with the development of high average power systems there is an increasing interest in femotosecond pulse generation and amplification using Tm- doped fiber lasers. High peak power sources operating near 2 (&)#181;m have the potential to be efficient pump sources to generate mid-infrared light through supercontinuum generation or optical parametric oscillators. This thesis focuses on the development of a laser system utilizing chirped pulse amplification (CPA) to achieve record level energies and peak powers for ultrashort pulses in Tm-doped fiber. A mode-locked oscillator was built to generate femtosecond pulses operating with pJ energy. Pulses generated in the mode-locked oscillator were limited to low energies and contained spectral modulation due to the mode-locking mechanism, therefore, a Raman-soliton self-frequency shift (Raman-SSFS) amplifier was built to amplify pulses, decrease the pulse duration, and spectrally clean pulses. These pulses were amplified using chirped pulse amplification (CPA) in which, limiting factors for amplification were examined and a high peak power system was built. The primary limiting factors of CPA in fibers include the nonlinear phase accumulation, primarily through self-phase modulation (SPM), and gain narrowing. Gain narrowing was examined by temporally stretching pulses in a highly nonlinear fiber that both stretched the pulse duration and broadened the spectrum. A high peak power CPA system amplified pulses to 1 (&)#181;J energy with 300 fs compressed pulses, corresponding to a peak power (>)3 MW. High peak power pulses were coupled into highly nonlinear fibers to generate supercontinuum.
Show less - Date Issued
- 2012
- Identifier
- CFE0004752, ucf:49768
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004752
- Title
- Design and Verification of a Multi-Terawatt Ti-Sapphire Femtosecond Laser System.
- Creator
-
Roumayah, Patrick, Shah, Lawrence, Richardson, Martin, Amezcua Correa, Rodrigo, University of Central Florida
- Abstract / Description
-
Ultrashort pulse lasers are well-established in the scientific community due to the wide range of applications facilitated by their extreme intensities and broad bandwidth capabilities. This thesis will primarily present the design for the Mobile Ultrafast High Energy Laser Facility (MU-HELF) for use in outdoor atmospheric propagation experiments under development at the Laser Plasma Laboratory at UCF. The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse Amplification (CPA) laser, operating...
Show moreUltrashort pulse lasers are well-established in the scientific community due to the wide range of applications facilitated by their extreme intensities and broad bandwidth capabilities. This thesis will primarily present the design for the Mobile Ultrafast High Energy Laser Facility (MU-HELF) for use in outdoor atmospheric propagation experiments under development at the Laser Plasma Laboratory at UCF. The system is a 100fs 500 mJ Ti-Sapphire Chirped-Pulse Amplification (CPA) laser, operating at 10 Hz. Some background on the generation of very high intensity optical pulses is also presented, alongside an overview of the physics of filamentation. As part of the design of MU-HELF, this thesis focuses on a novel approach to manage the large amount of dispersion required to stretch the pulse for CPA utilizing a custom nonlinear chirped Volume Bragg Grating (VBG) as a pulse stretcher matched to a traditional Treacy compressor. As part of this thesis, the dispersion of the CPA system was thoroughly modeled to properly design the chirped VBG and fabricated VBGs were characterized using a scanning spectral interferometry technique. The work demonstrates the feasibility of using a compact monolithic pulse stretcher in terawatt class CPA lasers.
Show less - Date Issued
- 2017
- Identifier
- CFE0006651, ucf:51241
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006651
- Title
- ALL-SEMICONDUCTOR HIGH POWER MODE-LOCKED LASER SYSTEM.
- Creator
-
Kim, Kyungbum, Delfyett, Peter, University of Central Florida
- Abstract / Description
-
The objective of this dissertation is to generate high power ultrashort optical pulses from an all-semiconductor mode-locked laser system. The limitations of semiconductor optical amplifier in high energy, ultrashort pulse amplification are reviewed. A method to overcome the fundamental limit of small stored energy inside semiconductor optical amplifier called "eXtreme Chirped Pulse Amplification (X-CPA)" is proposed and studied theoretically and experimentally. The key benefits of the...
Show moreThe objective of this dissertation is to generate high power ultrashort optical pulses from an all-semiconductor mode-locked laser system. The limitations of semiconductor optical amplifier in high energy, ultrashort pulse amplification are reviewed. A method to overcome the fundamental limit of small stored energy inside semiconductor optical amplifier called "eXtreme Chirped Pulse Amplification (X-CPA)" is proposed and studied theoretically and experimentally. The key benefits of the concept of X-CPA are addressed. Based on theoretical and experimental study, an all-semiconductor mode-locked X-CPA system consisting of a mode-locked master oscillator, an optical pulse pre-stretcher, a semiconductor optical amplifier (SOA) pulse picker, an extreme pulse stretcher/compressor, cascaded optical amplifiers, and a bulk grating compressor is successfully demonstrated and generates >kW record peak power. A potential candidate for generating high average power from an X-CPA system, novel grating coupled surface emitting semiconductor laser (GCSEL) devices, are studied experimentally. The first demonstration of mode-locking with GCSELs and associated amplification characteristics of grating coupled surface emitting SOAs will be presented. In an effort to go beyond the record setting results of the X-CPA system, a passive optical cavity amplification technique in conjunction with the X-CPA system is constructed, and studied experimentally and theoretically.
Show less - Date Issued
- 2006
- Identifier
- CFE0001069, ucf:46767
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001069