Current Search: dynamic demand (x)
View All Items
- Title
- MEASURING THE EFFECT OF ERRATIC DEMANDON SIMULATED MULTI-CHANNEL MANUFACTURINGSYSTEM PERFORMANCE.
- Creator
-
Kohan, Nancy, Kulonda, Dennis, University of Central Florida
- Abstract / Description
-
ABSTRACT To handle uncertainties and variabilities in production demands, many manufacturing companies have adopted different strategies, such as varying quoted lead time, rejecting orders, increasing stock or inventory levels, and implementing volume flexibility. Make-to-stock (MTS) systems are designed to offer zero lead time by providing an inventory buffer for the organizations, but they are costly and involve risks such as obsolescence and wasted expenditures. The main concern of make-to...
Show moreABSTRACT To handle uncertainties and variabilities in production demands, many manufacturing companies have adopted different strategies, such as varying quoted lead time, rejecting orders, increasing stock or inventory levels, and implementing volume flexibility. Make-to-stock (MTS) systems are designed to offer zero lead time by providing an inventory buffer for the organizations, but they are costly and involve risks such as obsolescence and wasted expenditures. The main concern of make-to-order (MTO) systems is eliminating inventories and reducing the non-value-added processes and wastes; however, these systems are based on the assumption that the manufacturing environments and customers' demand are deterministic. Research shows that in MTO systems variability and uncertainty in the demand levels causes instability in the production flow, resulting in congestion in the production flow, long lead times, and low throughput. Neither strategy is wholly satisfactory. A new alternative approach, multi-channel manufacturing (MCM) systems are designed to manage uncertainties and variabilities in demands by first focusing on customers' response time. The products are divided into different product families, each with its own manufacturing stream or sub-factory. MCM also allocates the production capacity needed in each sub-factory to produce each product family. In this research, the performance of an MCM system is studied by implementing MCM in a real case scenario from textile industry modeled via discrete event simulation. MTS and MTO systems are implemented for the same case scenario and the results are studied and compared. The variables of interest for this research are the throughput of products, the level of on-time deliveries, and the inventory level. The results conducted from the simulation experiments favor the simulated MCM system for all mentioned criteria. Further research activities, such as applying MCM to different manufacturing contexts, is highly recommended.
Show less - Date Issued
- 2004
- Identifier
- CFE0000240, ucf:46275
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000240
- Title
- Systems Analysis for Urban Water Infrastructure Expansion with Global Change Impact under Uncertainties.
- Creator
-
Qi, Cheng, Chang, Ni-bin, Geiger, Christopher, Xanthopoulos, Petros, Wanielista, Martin, University of Central Florida
- Abstract / Description
-
Over the past decades, cost-effectiveness principle or cost-benefit analysis has been employed oftentimes as a typical assessment tool for the expansion of drinking water utility. With changing public awareness of the inherent linkages between climate change, population growth and economic development, the addition of global change impact in the assessment regime has altered the landscape of traditional evaluation matrix. Nowadays, urban drinking water infrastructure requires careful long...
Show moreOver the past decades, cost-effectiveness principle or cost-benefit analysis has been employed oftentimes as a typical assessment tool for the expansion of drinking water utility. With changing public awareness of the inherent linkages between climate change, population growth and economic development, the addition of global change impact in the assessment regime has altered the landscape of traditional evaluation matrix. Nowadays, urban drinking water infrastructure requires careful long-term expansion planning to reduce the risk from global change impact with respect to greenhouse gas (GHG) emissions, economic boom and recession, as well as water demand variation associated with population growth and migration. Meanwhile, accurate prediction of municipal water demand is critically important to water utility in a fast growing urban region for the purpose of drinking water system planning, design and water utility asset management. A system analysis under global change impact due to the population dynamics, water resources conservation, and environmental management policies should be carried out to search for sustainable solutions temporally and spatially with different scales under uncertainties. This study is aimed to develop an innovative, interdisciplinary, and insightful modeling framework to deal with global change issues as a whole based on a real-world drinking water infrastructure system expansion program in Manatee County, Florida. Four intertwined components within the drinking water infrastructure system planning were investigated and integrated, which consists of water demand analysis, GHG emission potential, system optimization for infrastructure expansion, and nested minimax-regret (NMMR) decision analysis under uncertainties. In the water demand analysis, a new system dynamics model was developed to reflect the intrinsic relationship between water demand and changing socioeconomic environment. This system dynamics model is based on a coupled modeling structure that takes the interactions among economic and social dimensions into account offering a satisfactory platform. In the evaluation of GHG emission potential, a life cycle assessment (LCA) is conducted to estimate the carbon footprint for all expansion alternatives for water supply. The result of this LCA study provides an extra dimension for decision makers to extract more effective adaptation strategies. Both water demand forecasting and GHG emission potential were deemed as the input information for system optimization when all alternatives are taken into account simultaneously. In the system optimization for infrastructure expansion, a multiobjective optimization model was formulated for providing the multitemporal optimal facility expansion strategies. With the aid of a multi-stage planning methodology over the partitioned time horizon, such a systems analysis has resulted in a full-scale screening and sequencing with respect to multiple competing objectives across a suite of management strategies. In the decision analysis under uncertainty, such a system optimization model was further developed as a unique NMMR programming model due to the uncertainties imposed by the real-world problem. The proposed NMMR algorithm was successfully applied for solving the real-world problem with a limited scale for the purpose of demonstration.
Show less - Date Issued
- 2012
- Identifier
- CFE0004425, ucf:49354
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004425
- Title
- A Comparative Evaluation of FDSA,GA, and SA Non-Linear Programming Algorithms and Development of System-Optimal Dynamic Congestion Pricing Methodology on I-95 Express.
- Creator
-
Graham, Don, Radwan, Ahmed, Abdel-Aty, Mohamed, Al-Deek, Haitham, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
As urban population across the globe increases, the demand for adequatetransportation grows. Several strategies have been suggested as a solution to the congestion which results from this high demand outpacing the existing supply of transportation facilities.High (-)Occupancy Toll (HOT) lanes have become increasingly more popular as a feature on today's highway system. The I-95 Express HOT lane in Miami Florida, which is currently being expanded from a single Phase (Phase I) into two Phases,...
Show moreAs urban population across the globe increases, the demand for adequatetransportation grows. Several strategies have been suggested as a solution to the congestion which results from this high demand outpacing the existing supply of transportation facilities.High (-)Occupancy Toll (HOT) lanes have become increasingly more popular as a feature on today's highway system. The I-95 Express HOT lane in Miami Florida, which is currently being expanded from a single Phase (Phase I) into two Phases, is one such HOT facility. With the growing abundance of such facilities comes the need for in- depth study of demand patterns and development of an appropriate pricing scheme which reduces congestion.This research develops a method for dynamic pricing on the I-95 HOT facility such as to minimize total travel time and reduce congestion. We apply non-linear programming (NLP) techniques and the finite difference stochastic approximation (FDSA), genetic algorithm (GA) and simulated annealing (SA) stochastic algorithms to formulate and solve the problem within a cell transmission framework. The solution produced is the optimal flow and optimal toll required to minimize total travel time and thus is the system-optimal solution.We perform a comparative evaluation of FDSA, GA and SA non-linear programmingalgorithms used to solve the NLP and the ANOVA results show that there are differences in the performance of the NLP algorithms in solving this problem and reducing travel time. We then conclude by demonstrating that econometric forecasting methods utilizing vector autoregressive (VAR) techniques can be applied to successfully forecast demand for Phase 2 of the 95 Express which is planned for 2014.
Show less - Date Issued
- 2013
- Identifier
- CFE0005000, ucf:50019
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005000