Current Search: feedback timing (x)
View All Items
- Title
- IMMEDIATE VERSUS DELAYED FEEDBACK IN SIMULATION BASED TRAINING: MATCHING FEEDBACK DELIVERY TIMING TO THE COGNITIVE DEMANDS OF THE TRAINING EXERCISE.
- Creator
-
Bolton, Amy, Bowers, Clint, University of Central Florida
- Abstract / Description
-
Optimal delivery of instruction is both critical and challenging in dynamic, scenario-based training (SBT) computer simulations such as those used by the military. Tasks that human instructors must perform during these sorts of simulated training exercises can impose a heavy burden on them. Partially due to advances in the state-of-the-art in training technology and partially due to the military's desire to reduce the number of personnel required, it may be possible to support functions...
Show moreOptimal delivery of instruction is both critical and challenging in dynamic, scenario-based training (SBT) computer simulations such as those used by the military. Tasks that human instructors must perform during these sorts of simulated training exercises can impose a heavy burden on them. Partially due to advances in the state-of-the-art in training technology and partially due to the military's desire to reduce the number of personnel required, it may be possible to support functions that overburdened instructors perform by automating much of the SBT process in a computer simulation. Unfortunately though, after more than 50 years of literature documenting research conducted in the area of training interventions, few empirically-supported guidelines have emerged to direct the choice and implementation of effective, automated training interventions. The current study sought to provide empirical guidance for the optimal timing of feedback delivery (i.e., immediate vs. delayed) in a dynamic, SBT computer simulation. The premise of the investigation was that the demand for overall cognitive resources during the training exercise would prescribe the proper timing of feedback delivery. To test the hypotheses, 120 volunteers were randomly assigned to 10 experimental conditions. After familiarization on the experimental testbed, participants completed a total of seven, 10-minute scenarios, which were divided across two training phases. During each training phase participants would receive either immediate or delayed feedback and would perform either high or low cognitive load scenarios. Four subtask measures were recorded during test scenarios as well as subjective reports of mental demand, temporal demand and frustration. Instructional efficiency ratios were computed using both objective performance data and subjective reports of mental demand. A series of planned comparisons were conducted to investigate the training effectiveness of differing scenario cognitive loads (low vs. high), timing of feedback delivery (immediate vs. delayed), and sequencing the timing of feedback delivery and the cognitive load of the scenario. In fact, the data did not support the hypotheses. Therefore, post hoc, exploratory data analyses were performed to determine if there were trends in the data that would inform future investigations. The results for these analyses are discussed with suggested directions for future research.
Show less - Date Issued
- 2006
- Identifier
- CFE0001223, ucf:46935
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001223
- Title
- TEXT VERSUS VERBAL REAL-TIME FEEDBACK DURING SIMULATION-BASED TRAINING OF HIGHER-ORDER COGNITIVE SKILLS.
- Creator
-
Fiorella, Christopher, Shumaker, Randall, University of Central Florida
- Abstract / Description
-
A crucial component of instructional design for simulation-based training systems involves optimizing the presentation of complex material in order to maximize knowledge acquisition and application. One approach toward facilitating the learning of this complex information is to instantiate instructional strategies within the training systems themselves. However, there are few established guidelines in place which are meant specifically for real-time guidance strategies within simulation-based...
Show moreA crucial component of instructional design for simulation-based training systems involves optimizing the presentation of complex material in order to maximize knowledge acquisition and application. One approach toward facilitating the learning of this complex information is to instantiate instructional strategies within the training systems themselves. However, there are few established guidelines in place which are meant specifically for real-time guidance strategies within simulation-based environments. Consequently, this study aims to apply findings from the literature on instructional information presentation to drive decisions for how to most effectively provide real-time feedback during training of simulated decision-making tasks. Research has shown that presenting text information in an auditory mode during direct instruction of operational tasks enhances learning and reduces the probability of learners experiencing cognitive overload. Similar effects have been found regarding the presentation modality of feedback during operational tasks. In the current study, this principle was extended by comparing text versus verbal real-time feedback presentation during learning of higher-level cognitive skills in a virtual environment. Participants were instructed on how to perform a simulated decision-making task, while receiving text, verbal or no instructional feedback in real-time, based on their performance. Participants then completed an assessment scenario in which no feedback was provided to any group. It was hypothesized that a linear relationship would exist across each of the three conditions, with the verbal group making the best decisions, followed by the text group, and then by the control group. Additionally, reduced cognitive load was expected throughout the instructional process for those receiving verbal feedback prompts compared to those receiving text prompts and the control. Analyses revealed several significant linear trends across conditions regarding measures of knowledge acquisition and application. The results provide support for the hypothesis that verbal real-time feedback is more effective than text during training of primarily visual tasks for the acquisition of higher-order cognitive skills such as decision making. There were no significant linear trends regarding the amount of cognitive load subjectively reported during training and assessment. The results of this study indicate that instructional systems intended to train primarily visual tasks should present real-time feedback in verbal rather than text form.
Show less - Date Issued
- 2010
- Identifier
- CFE0003555, ucf:48915
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003555