Current Search: hurricanes (x)
View All Items
Pages
- Title
- THE RESPONSE OF A GENERAL CIRCULATION CLIMATE MODEL TOHIGH LATITUDE FRESHWATER FORCING IN THE ATLANTIC BASINWITH RESPECT TOTROPICAL CYCLONE-LIKE VORTICES.
- Creator
-
Paulis, Victor, Clarke, Thomas, University of Central Florida
- Abstract / Description
-
The current cycle of climate change along with increases in hurricane activity, changing precipitation patterns, glacial melt, and other extremes of weather has led to interest and research into the global correlation or teleconnection between these events. Examination of historical climate records, proxies and observations is leading to formulation of hypotheses of climate dynamics with modeling and simulation being used to test these hypotheses as well as making projections. Ocean currents...
Show moreThe current cycle of climate change along with increases in hurricane activity, changing precipitation patterns, glacial melt, and other extremes of weather has led to interest and research into the global correlation or teleconnection between these events. Examination of historical climate records, proxies and observations is leading to formulation of hypotheses of climate dynamics with modeling and simulation being used to test these hypotheses as well as making projections. Ocean currents are believed to be an important factor in climate change with thermohaline circulation (THC) fluctuations being implicated in past cycles of abrupt change. Freshwater water discharge into high-latitude oceans attributed to changing precipitation patterns and glacial melt, particularly the North Atlantic, has also been associated with historical abrupt climate changes and is believed to have inhibited or shut down the THC overturning mechanism by diluting saline surface waters transported from the tropics. Here we analyze outputs of general circulation model (GCM) simulations parameterized by different levels of freshwater flux (no flux (control), 0.1 Sverdrup (Sv) and 1.0 Sv) with respect to tropical cyclone-like vortices (TCLVs) to determine any trend in simulated tropical storm frequency, duration, and location relative to flux level, as well as considering the applicability of using GCMs for tropical weather research. Increasing flux levels produced fewer storms and storm days, increased storm duration, a southerly and westerly shift (more pronounced for the 0.1 Sv level) in geographic distribution and increased activity near the African coast (more pronounced for the 1.0 Sv level). Storm intensities and tracks were not realistic compared to observational (real-life) values and is attributed to the GCM resolution not being fine enough to realistically simulate storm (microscale) dynamics.
Show less - Date Issued
- 2007
- Identifier
- CFE0001810, ucf:47339
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001810
- Title
- Analysis of Hydrodynamic and Bathymetric gradients in Canaveral National Seashore following Living shoreline and oyster restorations.
- Creator
-
Spiering, David, Kibler, Kelly, Medeiros, Stephen, Singh, Arvind, University of Central Florida
- Abstract / Description
-
Coastal vulnerability has been gaining recognition as a critical issue, especially with the increasing predictions of sea level rise. Susceptibility to extreme events, eutrophication, and shoreline modification has left many coastal regions in a degraded state. Shoreline protection has traditionally taken the form of seawalls and offshore breakwaters which can be detrimental to both the local ecosystems and adjoining shorelines. The objective of this thesis is to analyze the hydrodynamic and...
Show moreCoastal vulnerability has been gaining recognition as a critical issue, especially with the increasing predictions of sea level rise. Susceptibility to extreme events, eutrophication, and shoreline modification has left many coastal regions in a degraded state. Shoreline protection has traditionally taken the form of seawalls and offshore breakwaters which can be detrimental to both the local ecosystems and adjoining shorelines. The objective of this thesis is to analyze the hydrodynamic and bathymetric variation that occurs within Mosquito Lagoon, Florida following living shoreline and oyster reef restorations. The shoreline sites were sampled using a Before-After-Control-Impact (BACI) design and data were analyzed to ascertain the hydrodynamic and bathymetric variations that occurred resulting from plantings of emergent vegetation and deployment of biogenic wave break structures. Turbulent statistics were calculated to determine the effects of nearshore emergent vegetation on the incoming currents and waves. The vegetative growth in conjunction with the wave break structure was shown to reduce the onshore velocities to 46% of those observed at the reference site. Surveys among restored and degraded shorelines and oyster reefs exhibit average crest heights 10-20 cm lower in the restored sites. Nearshore slopes at the hard armored TM Seawall site were over 161% steeper than the restored sites comprised of emergent vegetation and wave break structures implying that scour was present at the toe of the structure from potentially reflected wave energies and increased swash velocities. Quantifying the hydrodynamic and geomorphic processes at work within restored shorelines and reefs may aide managers in best practices both in selection of viable restoration sites and with proper implementation of restoration techniques.
Show less - Date Issued
- 2019
- Identifier
- CFE0007535, ucf:52601
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007535
- Title
- COMPUTATIONAL HURRICANE HAZARD ANALYSIS-A PERFORMANCE BASED ENGINEERING VIEW.
- Creator
-
Vanek, Christopher, Mackie, Kevin, University of Central Florida
- Abstract / Description
-
Widespread structural damage to critical facilities such as levees, buildings, dams and bridges during hurricanes has exemplified the need to consider multiple hazards associated with hurricanes as well as the potential for unacceptable levels of performance even if failure is not observed. These inadequate standards warrant the use of more accurate methods to describe the anticipated structural response, and damage for extreme events often termed performance based engineering (PBE)....
Show moreWidespread structural damage to critical facilities such as levees, buildings, dams and bridges during hurricanes has exemplified the need to consider multiple hazards associated with hurricanes as well as the potential for unacceptable levels of performance even if failure is not observed. These inadequate standards warrant the use of more accurate methods to describe the anticipated structural response, and damage for extreme events often termed performance based engineering (PBE). Therefore PBE was extended into the field of hurricane engineering in this study. Application of performance-based principles involves collection of the numerous hazards data from sources such as historical records, laboratory experiments or stochastic simulations. However, the hazards associated with a hurricane typically include spatial and temporal variation therefore, more detailed collection of data from each hazard of this loading spectrum is required. At the same time, computational power and computer-aided design have advanced and potentially allows for collection of the structure-specific hazard data. This novel technique, known as computational fluid dynamics (CFD), was applied to the wind and wave hazards associated with hurricanes to accurately quantify the spectrum of dynamic loads in this study. Numerical simulation results are presented on verification of this technique with laboratory experimental studies and further application to a typical Florida building and bridge prototype. Both the time and frequency domain content of random process signals were analyzed and compared through basic properties including the spectral density, autocorrelation, and mean. Following quantification of the dynamic loads on each structure, a detailed structural FEM was constructed of each structure and response curves were created for various levels of hurricane categories. Results show that both the time and frequency content of the dynamic signal could be accurately captured through CFD simulations in a much more cost effective manner than laboratory experimentation. Structural FEM models showed the poor performance of two coastal structures designed using deterministic principles, as serviceability and strength limit states were exceeded. Additionally, the response curves created for the prototype structure could be further developed for multiple wind directions and wave periods. Thus CFD is a viable option to wind and wave laboratory studies and a key tool for the development of PBE in the field of hurricane engineering.
Show less - Date Issued
- 2010
- Identifier
- CFE0003491, ucf:48963
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003491
- Title
- HURRICANE KATRINA AND THE PERCEPTION OF RISK: INCORPORATING THE LOCAL CONTEXT.
- Creator
-
Campbell, Nnenia, Canan, Penelope, University of Central Florida
- Abstract / Description
-
This paper identifies social conditions that shape perceptions of risk to environmental toxins among residents in the Gulf Coasts of Louisiana and Mississippi following Hurricane Katrina. Demographic information from a randomly selected sample of 2,548 residents was used to explore the concept of the "White male effect" as discussed in previous literature, which has found that white males are particularly risk accepting compared to all other race and gender groups. This analysis also...
Show moreThis paper identifies social conditions that shape perceptions of risk to environmental toxins among residents in the Gulf Coasts of Louisiana and Mississippi following Hurricane Katrina. Demographic information from a randomly selected sample of 2,548 residents was used to explore the concept of the "White male effect" as discussed in previous literature, which has found that white males are particularly risk accepting compared to all other race and gender groups. This analysis also evaluated the influence of trust in government and beliefs about environmental justice on perceived exposure and compared responses from residents within and outside the City of New Orleans to determine whether there is evidence of location-specific differences. Hierarchical regression analysis revealed strong support for the combined race and gender effects proposed by previous literature. Additionally, hypotheses regarding the influence of trust in government and belief in environmental injustice were supported. Suggestions for future research and policy implications are discussed.
Show less - Date Issued
- 2009
- Identifier
- CFE0002712, ucf:48170
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002712
- Title
- Modeling Mass Care Resource Provision Post Hurricane.
- Creator
-
Muhs, Tammy, Kincaid, John, Rollins, David, Dorman, Teresa, Taylor, Gregory, University of Central Florida
- Abstract / Description
-
Determining the amount of resources needed, specifically food and water, following a hurricane is not a straightforward task. Through this research effort, an estimating tool was developed that takes into account key demographic and evacuation behavioral effects, as well as hurricane storm specifics to estimate the number of meals required for the first fourteen days following a hurricane making landfall in the State of Florida. The Excel based estimating tool was created using data collected...
Show moreDetermining the amount of resources needed, specifically food and water, following a hurricane is not a straightforward task. Through this research effort, an estimating tool was developed that takes into account key demographic and evacuation behavioral effects, as well as hurricane storm specifics to estimate the number of meals required for the first fourteen days following a hurricane making landfall in the State of Florida. The Excel based estimating tool was created using data collected from four hurricanes making landfall in Florida during 2004-2005. The underlying model used in the tool is a Regression Decision Tree with predictor variables including direct impact, poverty level, and hurricane impact score. The hurricane impact score is a hurricane classification system resulting from this research that includes hurricane category, intensity, wind field size, and landfall location. The direct path of a hurricane, a higher than average proportion of residents below the poverty level, and the hurricane impact score were all found to have an effect on the number of meals required during the first fourteen days following a hurricane making landfall in the State of Florida.
Show less - Date Issued
- 2011
- Identifier
- CFE0004143, ucf:49053
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004143
- Title
- COUPLING OF HYDRODYNAMIC AND WAVE MODELS FOR STORM TIDE SIMULATIONS: A CASE STUDY FOR HURRICANE FLOYD (1999).
- Creator
-
Funakoshi, Yuji, Hagen, Scott, University of Central Florida
- Abstract / Description
-
This dissertation presents the development of a two-dimensional St. Johns River model and the coupling of hydrodynamic and wave models for the simulation of storm tides. The hydrodynamic model employed for calculating tides and surges is ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated) developed by Luettich et al. (1992). The finite element based model solves the fully nonlinear shallow water equations in the generalized wave...
Show moreThis dissertation presents the development of a two-dimensional St. Johns River model and the coupling of hydrodynamic and wave models for the simulation of storm tides. The hydrodynamic model employed for calculating tides and surges is ADCIRC-2DDI (ADvanced CIRCulation Model for Shelves, Coasts and Estuaries, Two-Dimensional Depth Integrated) developed by Luettich et al. (1992). The finite element based model solves the fully nonlinear shallow water equations in the generalized wave continuity form. Hydrodynamic applications are operated with the following forcings: 1) astronomical tides, 2) inflows from tributaries, 3) meteorological effects (winds and pressure), and 4) waves (wind-induced waves). The wave model applied for wind-induced wave simulation is the third-generation SWAN (Simulating WAves Nearshore), applicable to the estimation of wave parameters in coastal areas and estuaries. The SWAN model is governed by the wave action balance equation driven by wind, sea surface elevations and current conditions (Holthuijsen et al. 2004). The overall work is comprised of three major phases: 1) To develop a model domain that incorporates the entire East Coast of the United States, Gulf of Mexico and Caribbean Sea, while honing in on the St. Johns River area; 2) To employ output from the SWAN model with the ADCIRC model and produce a uni-directional coupling of the two models in order to investigate the effects of the wave radiation stresses; 3) To couple the ADCIRC model with the SWAN model to describe the complete interactions of the two physical processes. Model calibration and comparisons are accomplished in three steps. First, astronomical tide simulation results are calibrated with historical NOS (National Ocean Service) tide data. Second, overland and riverine flows and meteorological effects are included, and computed river levels are compared with the historical NOS water level data. Finally, the storm tides generated by Hurricane Floyd are simulated and compared with historical data. This research results in a prototype for real-time simulation of tides and waves for flash flood and river-stage forecasting efforts of the NWS Forecasting Centers that border coastal areas. The following two main conclusions are reported: 1) regardless of whether one uses uni-coupling or coupling, wind-induced waves result in an approximately 10 15 % higher peak storm tide level than without any coupling; and 2) the wave-current interaction described by the coupling model results in decreasing peaks and increasing troughs in the storm tide hydrograph. Two main corollary conclusions are also drawn from a 122-day hindcast for the period spanning June 1 October 1, 2005. First, wind forcing for the St. Johns River is equal to or greater than that of astronomic tides and generally supersedes the impact of inflows, while pressure variations have a minimal impact. Secondly, water levels inside the St. Johns River depend on the wind forcings in the deep ocean; however, if one applies an elevation hydrograph boundary condition from a large-scale domain model to a local-scale domain model the results are highly accurate.
Show less - Date Issued
- 2006
- Identifier
- CFE0001394, ucf:46957
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001394
- Title
- HURRICANE WIND RETRIEVAL ALGORITHM DEVELOPMENT FOR AN AIRBORNE CONICAL SCANNING SCATTEROMETER.
- Creator
-
Vasudevan, Santhosh, Jones, Linwood, University of Central Florida
- Abstract / Description
-
Reliable ocean wind vector measurements can be obtained using active microwave remote sensing (scatterometry) techniques. With the increase in the number of severe hurricanes making landfall in the United States, there is increased emphasis on operational monitoring of hurricane winds from aircraft. This thesis presents a data processing algorithm to provide real-time hurricane wind vector retrievals (wind speed and direction) from conically scanning airborne microwave scatterometer...
Show moreReliable ocean wind vector measurements can be obtained using active microwave remote sensing (scatterometry) techniques. With the increase in the number of severe hurricanes making landfall in the United States, there is increased emphasis on operational monitoring of hurricane winds from aircraft. This thesis presents a data processing algorithm to provide real-time hurricane wind vector retrievals (wind speed and direction) from conically scanning airborne microwave scatterometer measurements of ocean surface backscatter. The algorithm is developed to best suit the specifications for the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division's airborne scatterometer Integrated Wind and Rain Airborne Profiler (IWRAP). Based on previous scatterometer wind retrieval methodologies, the main focus of the work is to achieve rapid data processing to provide real-time measurements to the NOAA Hurricane Center. A detailed description is presented of special techniques used. Because IWRAP flight data were not available at the time of this development, the wind retrieval performance was evaluated using a Monte Carlo simulation, whereby radar backscatter measurements were simulated with instrument and geophysical noise and then used to infer the surface wind conditions in a simulated (numerical weather model) hurricane wind field
Show less - Date Issued
- 2006
- Identifier
- CFE0001477, ucf:47093
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001477
- Title
- HURRICANE WIND SPEED AND RAIN RATE RETRIEVAL ALGORITHM FOR THE STEPPED FREQUENCY MICROWAVE RADIOMETER.
- Creator
-
Amarin, Ruba, Jones, Linwood, University of Central Florida
- Abstract / Description
-
This thesis presents the development and validation of the Hurricane Imaging Retrieval Algorithm (HIRA) for the measurement of oceanic surface wind speed and rain rate in hurricanes. The HIRA is designed to process airborne microwave brightness temperatures from the NOAA, Stepped Frequency Microwave Radiometer (SFMR), which routinely collects data during NOAA hurricane hunter aircraft flights. SFMR measures wind speeds and rain rates at nadir only, but HIRA will soon be integrated with an...
Show moreThis thesis presents the development and validation of the Hurricane Imaging Retrieval Algorithm (HIRA) for the measurement of oceanic surface wind speed and rain rate in hurricanes. The HIRA is designed to process airborne microwave brightness temperatures from the NOAA, Stepped Frequency Microwave Radiometer (SFMR), which routinely collects data during NOAA hurricane hunter aircraft flights. SFMR measures wind speeds and rain rates at nadir only, but HIRA will soon be integrated with an improved surface wind speed model for expanded utilization with next generation microwave hurricane imagers, such as the Hurricane Imaging Radiometer (HIRad). HIRad will expand the nadir only measurements of SFMR to allow the measurement of hurricane surface winds and rain over a wide swath Results for the validation of HIRA retrievals are presented using SFMR brightness temperature data for 22 aircraft flights in 5 hurricanes during 2003-2005. Direct comparisons with the standard NOAA SFMR empirical algorithm provided excellent results for wind speeds up to 70 m/s. and rain rates up to 50 mm/hr.
Show less - Date Issued
- 2006
- Identifier
- CFE0001313, ucf:47024
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001313
- Title
- PHYSICALLY-BASED VISUALIZATION OF RESIDENTIAL BUILDING DAMAGE PROCESS IN HURRICANE.
- Creator
-
Liao, Dezhi, Kincaid, J. Peter, University of Central Florida
- Abstract / Description
-
This research provides realistic techniques to visualize the process of damage to residential building caused by hurricane force winds. Three methods are implemented to make the visualization useful for educating the public about mitigation measures for their homes. First, the underline physics uses Quick Collision Response Calculation. This is an iterative method, which can tune the accuracy and the performance to calculate collision response between building components. Secondly, the damage...
Show moreThis research provides realistic techniques to visualize the process of damage to residential building caused by hurricane force winds. Three methods are implemented to make the visualization useful for educating the public about mitigation measures for their homes. First, the underline physics uses Quick Collision Response Calculation. This is an iterative method, which can tune the accuracy and the performance to calculate collision response between building components. Secondly, the damage process is designed as a Time-scalable Process. By attaching a damage time tag for each building component, the visualization process is treated as a geometry animation allowing users to navigate in the visualization. The detached building components move in response to the wind force that is calculated using qualitative rather than quantitative techniques. The results are acceptable for instructional systems but not for engineering analysis. Quick Damage Prediction is achieved by using a database query instead of using a Monte-Carlo simulation. The database is based on HAZUS® engineering analysis data which gives it validity. A reasoning mechanism based on the definition of the overall building damage in HAZUS® is used to determine the damage state of selected building components including roof cover, roof sheathing, wall, openings and roof-wall connections. Exposure settings of environmental aspects of the simulated environment, such as ocean, trees, cloud and rain are integrated into a scene-graph based graphics engine. Based on the graphics engine and the physics engine, a procedural modeling method is used to efficiently render residential buildings. The resulting program, Hurricane!, is an instructional program for public education useful in schools and museum exhibits.
Show less - Date Issued
- 2007
- Identifier
- CFE0001609, ucf:47190
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001609
- Title
- OPTIMIZATION MODELS FOR EMERGENCY RELIEF SHELTER PLANNING FOR ANTICIPATED HURRICANE EVENTS.
- Creator
-
Sharawi, Abeer, Geiger, Christopher, University of Central Florida
- Abstract / Description
-
Natural disasters, specifically hurricanes, can cause catastrophic loss of life and property. In recent years, the United States has endured significant losses due to a series of devastating hurricanes (e.g., Hurricanes Charley and Ivan in 2004, and Hurricanes Katrina and Wilma in 2005). Several Federal authorities report that there are weaknesses in the emergency and disaster planning and response models that are currently employed in practice, thus creating a need for better decision models...
Show moreNatural disasters, specifically hurricanes, can cause catastrophic loss of life and property. In recent years, the United States has endured significant losses due to a series of devastating hurricanes (e.g., Hurricanes Charley and Ivan in 2004, and Hurricanes Katrina and Wilma in 2005). Several Federal authorities report that there are weaknesses in the emergency and disaster planning and response models that are currently employed in practice, thus creating a need for better decision models in emergency situations. The current models not only lack fast communication with emergency responders and the public, but are also inadequate for advising the pre-positioning of supplies at emergency shelters before the storm's impact. The problem of emergency evacuation relief shelter planning during anticipated hurricane events is addressed in this research. The shelter planning problem is modeled as a joint location-allocation-inventory problem, where the number and location of shelter facilities must be identified. In addition, the evacuating citizens must be assigned to the designated shelter facilities, and the amount of emergency supply inventory to pre-position at each facility must be determined. The objective is to minimize total emergency evacuation costs, which is equal to the combined facility opening and preparation cost, evacuee transportation cost and emergency supply inventory cost. A review of the emergency evacuation planning literature reveals that this class of problems has not been largely addressed to date. First, the emergency evacuation relief sheltering problem is formulated under deterministic conditions as a mixed integer non-linear programming (MINLP) model. For three different evacuation scenarios, the proposed MINLP model yields a plan that identifies the locations of relief shelters for evacuees, the assignment of evacuees to those shelters and the amount of emergency supplies to stockpile in advance of an anticipated hurricane. The MINLP model is then used (with minor modifications) to explore the idea of equally distributing the evacuees across the open shelters. The results for the three different scenarios indicate that a balanced utilization of the open shelters is achieved with little increase in the total evacuation cost. Next, the MINLP is enhanced to consider the stochastic characteristics of both hurricane strength and projected trajectory, which can directly influence the storm's behavior. The hurricane's strength is based on its hurricane category according to the Saffir-Simpson Hurricane Scale. Its trajectory is represented as a Markov chain, where the storm's path is modeled as transitions among states (i.e., coordinate locations) within a spherical coordinate system. A specific hurricane that made landfall in the state of Florida is used as a test case for the model. Finally, the stochastic model is employed within a robust optimization strategy, where several probable hurricane behavioral scenarios are solved. Then, a single, robust evacuation sheltering plan that provides the best results, not only in terms of maximum deviation of total evacuation cost across the likely scenarios, but also in terms of maximum deviation of unmet evacuee demand at the shelter locations, is generated. The practical value of this robust plan is quite significant. This plan should accommodate unexpected changes in the behavior of an approaching storm to a reasonable degree with minimal negative impact to the total evacuation cost and the fulfillment of evacuee demand at the shelter locations. Most importantly, the re-allocation and re-mobilization of emergency personnel and supplies are not required, which can cause confusion and potentially increase the response time of responders to the hurricane emergency. The computational results show the promise of this research and usefulness of the proposed models. This work is an initial step in addressing the simultaneous identification of shelter locations, assignment of citizens to those shelters, and determination of a policy for stockpiling emergency supplies in advance of a hurricane. Both the location-allocation problem and the inventory problem have been extensively and individually studied by researchers as well as practitioners. However, this joint location-allocation-inventory problem is a difficult problem to solve, especially in the presence of stochastic storm behavior. The proposed models, even in the deterministic case, are a significant step beyond the current state-of-the-art in the area of emergency and disaster planning.
Show less - Date Issued
- 2007
- Identifier
- CFE0001938, ucf:47446
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001938
- Title
- THE EFFECT OF TIDAL INLETS ON OPEN COAST STORM SURGE HYDROGRAPHS: A CASE STUDY OF HURRICANE IVAN (2004).
- Creator
-
Salisbury, Michael, Hagen, Scott, University of Central Florida
- Abstract / Description
-
Florida's Department of Transportation requires design storm tide hydrographs for coastal waters surrounding tidal inlets along the coast of Florida. These hydrographs are used as open ocean boundary conditions for local bridge scour models. At present, very little information is available on the effect that tidal inlets have on these open coast storm tide hydrographs. Furthermore, current modeling practice enforces a single design hydrograph along the open coast boundary for bridge scour...
Show moreFlorida's Department of Transportation requires design storm tide hydrographs for coastal waters surrounding tidal inlets along the coast of Florida. These hydrographs are used as open ocean boundary conditions for local bridge scour models. At present, very little information is available on the effect that tidal inlets have on these open coast storm tide hydrographs. Furthermore, current modeling practice enforces a single design hydrograph along the open coast boundary for bridge scour models. This thesis expands on these concepts and provides a more fundamental understanding on both of these modeling areas. A numerical parameter study is undertaken to elucidate the influence of tidal inlets on open coast storm tide hydrographs. Four different inlet-bay configurations are developed based on a statistical analysis of existing tidal inlets along the Florida coast. The length and depth of the inlet are held constant in each configuration, but the widths are modified to include the following four inlet profiles: 1) average Florida inlet width; 2) 100 meter inlet width; 3) 500 meter inlet width; and 4) 1000 meter inlet width. In addition, two unique continental shelf profiles are used to design the ocean bathymetry in the model domains: a bathymetry profile consistent with the west/northeast coast of Florida (wide continental shelf width), and a bathymetry profile similar to the southeast coast of Florida (narrow continental shelf width). The four inlet-bay configurations are paired with each of the bathymetry profiles to arrive at eight model domains employed in this study. Results from these domains are compared to control cases that do not include any inlet-bay system in the computational domain. The ADCIRC-2DDI numerical code is used to obtain water surface elevations for all studies performed herein. The code is driven by astronomic tides at the open ocean boundary, and wind velocities and atmospheric pressure profiles over the surface of the computational domains. Model results clearly indicate that the four inlet-bay configurations do not have a significant impact on the open coast storm tide hydrographs. Furthermore, a spatial variance amongst the storm tide hydrographs is recognized for open coast boundary locations extending seaward from the mouth of the inlet. The results and conclusions presented herein have implications toward future bridge scour modeling efforts. In addition, a hindcast study of Hurricane Ivan in the vicinity of Escambia Bay along the Panhandle of Florida is performed to assess the findings of the numerical parameter study in a real-life scenario. Initially, emphasis is placed on domain scale by comparing model results with historical data for three computational domains: an ocean-based domain, a shelf-based domain, and an inlet-based domain. Results indicate that the ocean-based domain favorably simulates storm surge levels within the bay compared to the other model domains. Furthermore, the main conclusions from the numerical parameter study are verified in the hindcast study: 1) the Pensacola Pass-Escambia Bay system has a minimal effect on the open coast storm tide hydrographs; and 2) the open coast storm tide hydrographs exhibit spatial dependence along typical open coast boundary locations.
Show less - Date Issued
- 2005
- Identifier
- CFE0000731, ucf:46619
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000731
- Title
- CLIMATE MODELING, OUTGOING LONGWAVE RADIATION, AND TROPICAL CYCLONE FORECASTING.
- Creator
-
Rechtman, Thomas, Mohapatra, Ram N., University of Central Florida
- Abstract / Description
-
Climate modeling and tropical cyclone forecasting are two significant issues that are continuously being improved upon for more accurate weather forecasting and preparedness. In this thesis, we have studied three climate models and formulated a new model with a view to determine the outgoing longwave radiation (OLR) budget at the top of the atmosphere (TOA) as observed by the National Oceanic and Atmospheric Administration's (NOAA) satellite based Advanced Very High Resolution Radiometer ...
Show moreClimate modeling and tropical cyclone forecasting are two significant issues that are continuously being improved upon for more accurate weather forecasting and preparedness. In this thesis, we have studied three climate models and formulated a new model with a view to determine the outgoing longwave radiation (OLR) budget at the top of the atmosphere (TOA) as observed by the National Oceanic and Atmospheric Administration's (NOAA) satellite based Advanced Very High Resolution Radiometer (AVHRR). In 2006, Karnauskas proposed the African meridional OLR as an Atlantic hurricane predictor, the relation was further proven in 2016 by Karnauskas and Li. Here we have considered a similar study for all other tropical cyclone basins.
Show less - Date Issued
- 2018
- Identifier
- CFH2000403, ucf:45775
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000403
- Title
- AFTER HURRICANE MARIA: PUERTO RICAN MIGRANTS AND RESIDENTIAL SEGREGATION IN THE ORLANDO MSA.
- Creator
-
Ospina, Gabriella, Cox, Jonathan, University of Central Florida
- Abstract / Description
-
The intent of this thesis is to analyze the racial attitudes of residents in the Orlando MSA towards Puerto Rican migrants that have moved as a result of Hurricane Maria and analyze the effects these attitudes may have on racial residential segregation in Central Florida. As the state with the third largest population of Latinos, Florida's residential landscape continues to be uniquely formed by a diverse, and markedly Latino, population. Florida's location in relation to South American and...
Show moreThe intent of this thesis is to analyze the racial attitudes of residents in the Orlando MSA towards Puerto Rican migrants that have moved as a result of Hurricane Maria and analyze the effects these attitudes may have on racial residential segregation in Central Florida. As the state with the third largest population of Latinos, Florida's residential landscape continues to be uniquely formed by a diverse, and markedly Latino, population. Florida's location in relation to South American and Caribbean countries has made it an opportune destination for immigrants and refugees. Therefore, it came as no surprise that when Hurricane Maria hit Puerto Rico in late 2017, thousands of Puerto Ricans sought refuge in Florida. This thesis examines racial attitudes towards this group of Puerto Rican migrants and the ways in which they could potentially affect neighborhood demographics. The study proceeds by collecting survey responses from participants living in the Orlando areas being analyzed. The survey asks participants about their general views of Puerto Rican migrants, it tests their knowledge of racial residential patterns in Orlando, and it analyzes their neighborhood preferences using a show card method.
Show less - Date Issued
- 2019
- Identifier
- CFH2000563, ucf:45691
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000563
- Title
- Hurricane Maria: A Qualitative Study of Recently Displaced Students to the State of Florida.
- Creator
-
Cabrera, Esmeralda, Rivera, Fernando, Donley, Amy, Hinojosa, Melanie, University of Central Florida
- Abstract / Description
-
Over the past ten years Puerto Rico has been experiencing a severe economic crisis that was worsened when Hurricane Maria made landfall on September 20, 2017. Maria hit Puerto Rico as a category 4 storm, devastating the whole island and its 3.4 millionresidents. Many students were left with minimal educational choices after Hurricane Maria hit Puerto Rico. Research on Latino/a students shows that they are met with unique experiences and challenges as they pursue higher education. The current...
Show moreOver the past ten years Puerto Rico has been experiencing a severe economic crisis that was worsened when Hurricane Maria made landfall on September 20, 2017. Maria hit Puerto Rico as a category 4 storm, devastating the whole island and its 3.4 millionresidents. Many students were left with minimal educational choices after Hurricane Maria hit Puerto Rico. Research on Latino/a students shows that they are met with unique experiences and challenges as they pursue higher education. The current study uses qualitative data to investigate what are the unique challenges and needs of displaced students from Puerto Rico? and what role does social capital play in confronting and navigating the challenges and needs associated with their transition to a new institutional setting? This study proposes to research the issues that many displaced Puerto Rican college student's face and add to the growing body of knowledge. It is important to understand how these recently displaced students will be affected by leaving behind, economic capital and cultural capital that they had built up in their communities on the island. Participation in the study included 9 participants from a large southeastern university that provided in-state tuition to displaced students for semi-structured qualitative interviews. Results revealed that family support was the main source of support for many of the students. Mentorship support was key in their educational success because the more support and encouragement from faculty led to a better transition. Support from peers was positively associated with a better transition and feeling of acceptance. Higher campus resources were positively associated with a better transition.
Show less - Date Issued
- 2019
- Identifier
- CFE0007606, ucf:52526
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007606
- Title
- DEVELOPMENT OF AN IMPROVED MICROWAVE OCEAN SURFACE EMISSIVITY RADIATIVE TRANSFER MODEL.
- Creator
-
El-Nimri, Salem, Jones, W. Linwood, University of Central Florida
- Abstract / Description
-
An electromagnetic model is developed for predicting the microwave blackbody emission from the ocean surface over a wide range of frequencies, incidence angles, and wind vector (speed and direction) for both horizontal and vertical polarizations. This ocean surface emissivity model is intended to be incorporated into an oceanic radiative transfer model to be used for microwave radiometric applications including geophysical retrievals over oceans. The model development is based on a collection...
Show moreAn electromagnetic model is developed for predicting the microwave blackbody emission from the ocean surface over a wide range of frequencies, incidence angles, and wind vector (speed and direction) for both horizontal and vertical polarizations. This ocean surface emissivity model is intended to be incorporated into an oceanic radiative transfer model to be used for microwave radiometric applications including geophysical retrievals over oceans. The model development is based on a collection of published ocean emissivity measurements obtained from satellites, aircraft, field experiments, and laboratory measurements. This dissertation presents the details of methods used in the ocean surface emissivity model development and comparisons with current emissivity models and aircraft radiometric measurements in hurricanes. Especially, this empirically derived ocean emissivity model relates changes in vertical and horizontal polarized ocean microwave brightness temperature measurements over a wide range of observation frequencies and incidence angles to physical roughness changes in the ocean surface, which are the result of the air/sea interaction with surface winds. Of primary importance are the Stepped Frequency Microwave Radiometer (SFMR) brightness temperature measurements from hurricane flights and independent measurements of surface wind speed that are used to define empirical relationships between C-band (4 ÃÂ 7 GHz) microwave brightness temperature and surface wind speed. By employing statistical regression techniques, we develop a physical-based ocean emissivity model with empirical coefficients that depends on geophysical parameters, such as wind speed, wind direction, sea surface temperature, and observational parameters, such as electromagnetic frequency, electromagnetic polarization, and incidence angle.
Show less - Date Issued
- 2010
- Identifier
- CFE0003085, ucf:48323
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003085
- Title
- HURRICANE WIND SPEED AND RAIN RATE MEASUREMENTS USING THE AIRBORNE HURRICANE IMAGING RADIOMETER (HIRAD).
- Creator
-
Amarin, Ruba, Jones, W. Linwood, University of Central Florida
- Abstract / Description
-
This dissertation presents results for an end-to-end computer simulation of a new airborne microwave remote sensor, the Hurricane Imaging Radiometer, HIRAD, which will provide improved hurricane surveillance. The emphasis of this research is the retrieval of hurricane-force wind speeds in the presence of intense rain and over long atmospheric slant path lengths that are encountered across its wide swath. Brightness temperature (Tb) simulations are performed using a forward microwave radiative...
Show moreThis dissertation presents results for an end-to-end computer simulation of a new airborne microwave remote sensor, the Hurricane Imaging Radiometer, HIRAD, which will provide improved hurricane surveillance. The emphasis of this research is the retrieval of hurricane-force wind speeds in the presence of intense rain and over long atmospheric slant path lengths that are encountered across its wide swath. Brightness temperature (Tb) simulations are performed using a forward microwave radiative transfer model (RTM) that includes an ocean surface emissivity model at high wind speeds developed especially for HIRAD high incidence angle measurements and a rain model for the hurricane environment. Also included are realistic sources of errors (e.g., instrument NEDT, antenna pattern convolution of scene Tb, etc.), which are expected in airborne hurricane observations. Case studies are performed using 3D environmental parameters produced by numerical hurricane models for actual hurricanes. These provide realistic ÃÂ"nature runsÃÂ" of rain, water vapor, clouds and surface winds from which simulated HIRAD TbÃÂ's are derived for various flight tracks from a high altitude aircraft. Using these simulated HIRAD measurements, Monte Carlo retrievals of wind speed and rain rate are performed using available databases of sea surface temperatures and climatological hurricane atmospheric parameters (excluding rain) as a priori information. Examples of retrieved hurricane wind speed and rain rate images are presented, and comparisons of the retrieved parameters with the numerical model data are made. Statistical results are presented over a broad range of wind and rain conditions and as a function of path length over the full swath.
Show less - Date Issued
- 2010
- Identifier
- CFE0003082, ucf:48330
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003082
- Title
- IMPACT OF HURRICANES ON STRUCTURES ÃÂ A PERFORMANCE BASED ENGINEERING VIEW.
- Creator
-
Mishra, Vijay, Mackie, Kevin, University of Central Florida
- Abstract / Description
-
The magnitude of damage caused to the United States (US) coast due to hurricanes has increased significantly in the last decade. During the period 2004-2005, the US experienced seven of the costliest hurricanes in the countryÃÂ's history (NWS TPC-5, 2007) leading to an estimated loss of ~ $158 billion. The present method for predicting hurricane losses, HAZUS (HAZard US), is solely based on hurricane hazard and damage caused to building envelopes only and not to...
Show moreThe magnitude of damage caused to the United States (US) coast due to hurricanes has increased significantly in the last decade. During the period 2004-2005, the US experienced seven of the costliest hurricanes in the countryÃÂ's history (NWS TPC-5, 2007) leading to an estimated loss of ~ $158 billion. The present method for predicting hurricane losses, HAZUS (HAZard US), is solely based on hurricane hazard and damage caused to building envelopes only and not to structural systems (Vickery et al., 2006). This method does not take into account an intermediate step that allows for better damage estimates, which is structural response to the hazards that in turn can be mapped to the damage. The focus of this study was to quantify the uncertainty in response of structures to the hurricane hazards associated with hurricanes from performance based engineering perspective. The study enumerates hazards associated with hurricanes events. The hazards considered can be quantified using a variety of measures, such as wind speed intensities, wave and surge heights. These hazards are quantified in terms of structural loads and are then applied to a structural system. Following that, structural analysis was performed to estimate the response from the structural system for given loads. All the possible responses are measured and they are fitted with suitable probability distribution to estimate the probability of a response. The response measured then can be used to understand the performance of a given structure under the various hurricane loads. Dynamic vs. static analysis was performed and results were compared. This will answer a few questions like, if there is any need to do both static and dynamic analysis and how hurricane loads affect the structural material models. This being an exploratory study, available resources, research, and models were used. For generation of annual or extreme values of hazard, various available wind speed, storm surge, and wave height models were studied and evaluated. The wind field model by Batts et al. (1980) was selected for generation of annual wind speed data. For calculation of maximum storm surge height, the Sea, Lake Overland Surges from Hurricane (SLOSH, Jelesnianski et al., 1992) program was used. Wave data was acquired from a National Oceanic and Atmospheric Administration (NOAA) database. The (extreme or annual) wind speed, surge height, and wave height generated were then fitted by suitable probability distributions to find the realizations of hazards and their probabilities. The distribution properties were calculated, correlations between the data were established, and a joint probability distribution function (PDF) of the parameters (wind speed, wave height, and storm surge) was generated. Once the joint distribution of extreme loads was established, the next step was to measure the dynamic response of the structural system to these hazards. To measure the structural response, a finite element model of three-story concrete frame were constructed. Time histories of wind load were generated from wind net pressure coefficients recorded in a wind tunnel test (Main and Fritz, 2006). Wave load time histories were generated using laboratory basin test (HawkeÃÂ's et al., 1993) wave height time history data and were converted into wave loads using BernoulliÃÂ's equation. Surge height was treated as a hydrostatic load in this analysis. These load time histories were then applied to the finite element model and response was measured. Response of the structural system was measured in terms of the mean and maximum displacements recorded at specific nodes of model. Response was calculated for loads having constant mean wind speed and surge/wave and different time histories. The dominant frequency in the wind load time histories was closer to the natural frequency of the structural model used than the dominant frequency in the wave height time histories. Trends in the response for various combinations of mean wind speed, wave height, and surge heights were analyzed. It was observed that responses are amplified with increase in the mean wind speed. Less response was measured for change in mean surge/wave height as the tributary area for wave forces was less compared to wind force. No increase in dynamic amplification factor was observed for increase in force time histories case.
Show less - Date Issued
- 2010
- Identifier
- CFE0003162, ucf:48612
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003162
- Title
- Understanding Crisis Communication and Mobility Resilience during Disasters from Social Media.
- Creator
-
Roy, Kamol, Hasan, Samiul, Eluru, Naveen, Wu, Yina, University of Central Florida
- Abstract / Description
-
Rapid communication during extreme events is one of the critical aspects of successful disaster management strategies. Due to their ubiquitous nature, social media platforms offer a unique opportunity for crisis communication. Moreover, social media usage on GPS enabled devices such as smartphones allow us to collect human movement data which can help understanding mobility during a disaster. This study leverages social media (Twitter) data to understand the effectiveness of social media...
Show moreRapid communication during extreme events is one of the critical aspects of successful disaster management strategies. Due to their ubiquitous nature, social media platforms offer a unique opportunity for crisis communication. Moreover, social media usage on GPS enabled devices such as smartphones allow us to collect human movement data which can help understanding mobility during a disaster. This study leverages social media (Twitter) data to understand the effectiveness of social media-based communication and the resilience of human mobility during a disaster. This thesis has two major contributions. First, about 52.5 million tweets related to hurricane Sandy are analyzed to assess the effectiveness of social media communication during disasters and identify the contributing factors leading to effective crisis communication strategies. Effectiveness of a social media user is defined as the ratio of attention gained over the number of tweets posted. A model is developed to explain more effective users based on several relevant features. Results indicate that during a disaster event, only few social media users become highly effective in gaining attention. In addition, effectiveness does not depend on the frequency of tweeting activity only; instead it depends on the number of followers and friends, user category, bot score (controlled by a human or a machine), and activity patterns (predictability of activity frequency). Second, to quantify the impacts of an extreme event to human movements, we introduce the concept of mobility resilience which is defined as the ability of a mobility infrastructure system to manage shocks and return to a steady state in response to an extreme event. We present a method to detect extreme events from geo-located movement data and to measure mobility resilience and loss of resilience due to those events. Applying this method, we measure resilience metrics from geo-located social media data for multiple types of disasters occurred all over the world. Quantifying mobility resilience may help us to assess the higher-order socio-economic impacts of extreme events and guide policies towards developing resilient infrastructures as well as a nation's overall disaster resilience.
Show less - Date Issued
- 2018
- Identifier
- CFE0007362, ucf:52090
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007362
- Title
- HURRICANE EVACUATION: ORIGIN, ROUTE AND DESTINATION.
- Creator
-
Dixit, Vinayak, Radwan, Essam, University of Central Florida
- Abstract / Description
-
Recent natural disasters have highlighted the need to evacuate people as quickly as possible. During hurricane Rita in 2005, people were stuck in queue buildups and large scale congestions, due to improper use of capacity, planning and inadequate response to vehicle breakdown, flooding and accidents. Every minute is precious in situation of such disaster scenarios. Understanding evacuation demand loading is an essential part of any evacuation planning. One of the factors often understood to...
Show moreRecent natural disasters have highlighted the need to evacuate people as quickly as possible. During hurricane Rita in 2005, people were stuck in queue buildups and large scale congestions, due to improper use of capacity, planning and inadequate response to vehicle breakdown, flooding and accidents. Every minute is precious in situation of such disaster scenarios. Understanding evacuation demand loading is an essential part of any evacuation planning. One of the factors often understood to effect evacuation, but not modeled has been the effect of a previous hurricane. This has also been termed as the 'Katrina Effect', where, due to the devastation caused by hurricane Katrina, large number of people decided to evacuate during Hurricane Rita, which hit Texas three weeks after Katrina hit Louisiana. An important aspect influencing the rate of evacuation loading is Evacuation Preparation Time also referred to as 'Mobilization time' in literature. A methodology to model the effect of a recent past hurricane on the mobilization times for evacuees in an evacuation has been presented utilizing simultaneous estimation techniques. The errors for the two simultaneously estimated models were significantly correlated, confirming the idea that a previous hurricane does significantly affect evacuation during a subsequent hurricane. The results show that the home ownership, number of individuals in the household, income levels, and level/risk of surge were significant in the model explaining the mobilization times for the households. Pet ownership and number of kids in the households, known to increase the mobilization times during isolated hurricanes, were not found to be significant in the model. Evacuation operations are marred by unexpected blockages, breakdown of vehicles and sudden flooding of transportation infrastructure. A fast and accurate simulation model to incorporate flexibility into the evacuation planning procedure is required to react to such situations. Presently evacuation guidelines are prepared by the local emergency management, by testing various scenarios utilizing micro-simulation, which is extremely time consuming and do not provide flexibility to evacuation plans. To gain computational speed there is a need to move away from the level of detail of a micro-simulation to more aggregated simulation models. The Cell Transmission Model which is a mesoscopic simulation model is considered, and compared with VISSIM a microscopic simulation model. It was observed that the Cell Transmission Model was significantly faster compared to VISSIM, and was found to be accurate. The Cell Transmission model has a nice linear structure, which is utilized to construct Linear Programming Problems to determine optimal strategies. Optimization models were developed to determine strategies for optimal scheduling of evacuation orders and optimal crossover locations for contraflow operations on freeways. A new strategy termed as 'Dynamic Crossovers Strategy' is proposed to alleviate congestion due to lane blockages (due to vehicle breakdowns, incidents etc.). This research finds that the strategy of implementing dynamic crossovers in the event of lane blockages does improve evacuation operations. The optimization model provides a framework within which optimal strategies are determined quickly, without the need to test multiple scenarios using simulation. Destination networks are the cause of the main bottlenecks for evacuation routes, such aspects of transportation networks are rarely studied as part of evacuation operations. This research studies destination networks from a macroscopic perspective. Various relationships between network level macroscopic variables (Average Flow, Average Density and Average speed) over the network were studied. Utilizing these relationships, a "Network Breathing Strategy" was proposed to improve dissipation of evacuating traffic into the destination networks. The network breathing strategy is a cyclic process of allowing vehicles to enter the network till the network reaches congestion, which is followed by closure of their entry into the network until the network reaches an acceptable state. After which entrance into the network is allowed again. The intuitive motivation behind this methodology is to ensure that the network does not remain in congested conditions. The term 'Network Breathing' was coined due to the analogy seen between this strategy to the process of breathing, where vehicles are inhaled by the network (vehicles allowed in) and dissipated by the network (vehicles are not allowed in). It is shown that the network breathing improves the dissipation of vehicle into the destination network. Evacuation operations can be divided into three main levels: at the origin (region at risk), routes and destination. This research encompasses all the three aspects and proposes a framework to assess the whole system in its entirety. At the Origin the demand dictates when to schedule evacuation orders, it also dictates the capacity required on different routes. These breakthroughs will provide a framework for a real time Decision Support System which will help emergency management official make decisions faster and on the fly.
Show less - Date Issued
- 2008
- Identifier
- CFE0002051, ucf:47589
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002051
- Title
- AN IMPROVED MICROWAVE RADIATIVE TRANSFER MODEL FOR OCEAN EMISSIVITY AT HURRICANE FORCE SURFACE WIND SPEED.
- Creator
-
EL-Nimri, Salem, Jones, Linwood, University of Central Florida
- Abstract / Description
-
An electromagnetic model for predicting the microwave blackbody emission from the ocean surface under the forcing of strong surface winds in hurricanes is being developed. This ocean emissivity model will be incorporated into a larger radiative transfer model used to infer ocean surface wind speed and rain rate in hurricanes from remotely sensed radiometric brightness temperature. The model development is based on measurements obtained with the Stepped Frequency Microwave Radiometer (SFMR),...
Show moreAn electromagnetic model for predicting the microwave blackbody emission from the ocean surface under the forcing of strong surface winds in hurricanes is being developed. This ocean emissivity model will be incorporated into a larger radiative transfer model used to infer ocean surface wind speed and rain rate in hurricanes from remotely sensed radiometric brightness temperature. The model development is based on measurements obtained with the Stepped Frequency Microwave Radiometer (SFMR), which routinely flys on the National Oceanic and Atmospheric Administration's hurricane hunter aircraft. This thesis presents the methods used in the wind speed model development and validation results for wind speeds up to 70 m/sec. The ocean emissivity model relates changes in measured C-band radiometric brightness temperatures to physical changes in the ocean surface. These surface modifications are the result of the drag of surface winds that roughen the sea surface, produce waves, and create white caps and foam from the breaking waves. SFMR brightness temperature measurements from hurricane flights and independent measurements of surface wind speed are used to define empirical relationships between microwave brightness temperature and surface wind speed. The wind speed model employs statistical regression techniques to develop a physics-based ocean emissivity model dependent on geophysical parameters, such as wind speed and sea surface temperature, and observational parameters, such as electromagnetic frequency, electromagnetic polarization, and incidence angle.
Show less - Date Issued
- 2006
- Identifier
- CFE0001312, ucf:47019
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001312