Current Search: instructional efficiency (x)
View All Items
- Title
- IMMEDIATE VERSUS DELAYED FEEDBACK IN SIMULATION BASED TRAINING: MATCHING FEEDBACK DELIVERY TIMING TO THE COGNITIVE DEMANDS OF THE TRAINING EXERCISE.
- Creator
-
Bolton, Amy, Bowers, Clint, University of Central Florida
- Abstract / Description
-
Optimal delivery of instruction is both critical and challenging in dynamic, scenario-based training (SBT) computer simulations such as those used by the military. Tasks that human instructors must perform during these sorts of simulated training exercises can impose a heavy burden on them. Partially due to advances in the state-of-the-art in training technology and partially due to the military's desire to reduce the number of personnel required, it may be possible to support functions...
Show moreOptimal delivery of instruction is both critical and challenging in dynamic, scenario-based training (SBT) computer simulations such as those used by the military. Tasks that human instructors must perform during these sorts of simulated training exercises can impose a heavy burden on them. Partially due to advances in the state-of-the-art in training technology and partially due to the military's desire to reduce the number of personnel required, it may be possible to support functions that overburdened instructors perform by automating much of the SBT process in a computer simulation. Unfortunately though, after more than 50 years of literature documenting research conducted in the area of training interventions, few empirically-supported guidelines have emerged to direct the choice and implementation of effective, automated training interventions. The current study sought to provide empirical guidance for the optimal timing of feedback delivery (i.e., immediate vs. delayed) in a dynamic, SBT computer simulation. The premise of the investigation was that the demand for overall cognitive resources during the training exercise would prescribe the proper timing of feedback delivery. To test the hypotheses, 120 volunteers were randomly assigned to 10 experimental conditions. After familiarization on the experimental testbed, participants completed a total of seven, 10-minute scenarios, which were divided across two training phases. During each training phase participants would receive either immediate or delayed feedback and would perform either high or low cognitive load scenarios. Four subtask measures were recorded during test scenarios as well as subjective reports of mental demand, temporal demand and frustration. Instructional efficiency ratios were computed using both objective performance data and subjective reports of mental demand. A series of planned comparisons were conducted to investigate the training effectiveness of differing scenario cognitive loads (low vs. high), timing of feedback delivery (immediate vs. delayed), and sequencing the timing of feedback delivery and the cognitive load of the scenario. In fact, the data did not support the hypotheses. Therefore, post hoc, exploratory data analyses were performed to determine if there were trends in the data that would inform future investigations. The results for these analyses are discussed with suggested directions for future research.
Show less - Date Issued
- 2006
- Identifier
- CFE0001223, ucf:46935
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001223
- Title
- TRANSFORMING LEARNING INTO A CONSTRUCTIVE COGNITIVE AND METACOGNITIVE ACTIVITY:USE OF A GUIDED LEARNER-GENERATED INSTRUCTIONAL STRATEGY WITHIN COMPUTER-BASED TRAINING.
- Creator
-
Cuevas, Haydee, Bowers, Clint, University of Central Florida
- Abstract / Description
-
This study explored the effectiveness of embedding a guided, learner-generated instructional strategy (query method), designed to support learners' cognitive and metacognitive processes, within the context of a computer-based complex task training environment (i.e., principles of flight in the aviation domain). The queries were presented as "stop and think" exercises in an open-ended question format that asked learners to generate either simple (low-level elaboration) or complex (high-level...
Show moreThis study explored the effectiveness of embedding a guided, learner-generated instructional strategy (query method), designed to support learners' cognitive and metacognitive processes, within the context of a computer-based complex task training environment (i.e., principles of flight in the aviation domain). The queries were presented as "stop and think" exercises in an open-ended question format that asked learners to generate either simple (low-level elaboration) or complex (high-level elaboration) sentences from a list of key training concepts. Results consistently highlighted the benefit of presenting participants with low-level elaboration queries, as compared to the no-query or high-level elaboration queries. In terms of post-training cognitive outcomes, participants presented with the low-level elaboration queries exhibited significantly more accurate knowledge organization (indicated by similarity to an expert model), better acquisition of perceptual knowledge, and superior performance on integrative knowledge assessment involving the integration and application of task-relevant concepts. Consistent with previous studies, no significant differences in performance were found on basic factual knowledge assessment. Presentation of the low-level elaboration queries also significantly improved the training program's instructional efficiency, that is, greater performance was achieved with less perceived cognitive effort. In terms of post-training metacognitive outcomes, participants presented with the low-level elaboration queries exhibited significantly greater metacomprehension accuracy and more effective metacognitive self-regulation during training. Contrary to predictions, incorporating the high-level elaboration queries into the training consistently failed, with only a few exceptions, to produce significantly better post-training outcomes than the no-query or the low-level elaboration query training conditions. The results of this study are discussed in terms of the theoretical implications for garnering a better understanding of the cognitive and metacognitive factors underlying the learning process. Practical implications for training design are presented within the context of cognitive load theory. Specifically, the increased cognitive processing of the training material associated with the high-level elaboration queries may have imposed too great a cognitive load on participants during training, minimizing the cognitive resources available for achieving a deeper, integrative understanding of the training concepts and hindering successful performance on the cognitive measures. The discussion also highlights the need for a multi-faceted approach to training evaluation.
Show less - Date Issued
- 2004
- Identifier
- CFE0000265, ucf:46221
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000265