Current Search: natural killer cell (x)
View All Items
- Title
- Development of Cytotoxic Natural Killer Cells for Ovarian Cancer Treatment.
- Creator
-
Pandey, Veethika, Altomare, Deborah, Zhao, Jihe, Khaled, Annette, Estevez, Alvaro, University of Central Florida
- Abstract / Description
-
Ovarian cancer is a leading cause of gynecological malignancy. Cytoreductive surgery and frontline platinum/taxane-based chemotherapy provides good initial efficacy in the treatment, but poor long-term patient survival. This is mainly caused by tumor relapse due to intraperitoneal spreading and ineffective alternate therapies to treat these resistant tumors. The challenge in the field is to develop strategies that would prove effective in these patients and extend overall survival.Over the...
Show moreOvarian cancer is a leading cause of gynecological malignancy. Cytoreductive surgery and frontline platinum/taxane-based chemotherapy provides good initial efficacy in the treatment, but poor long-term patient survival. This is mainly caused by tumor relapse due to intraperitoneal spreading and ineffective alternate therapies to treat these resistant tumors. The challenge in the field is to develop strategies that would prove effective in these patients and extend overall survival.Over the years, various treatments have been developed for the treatment of cancer amongst which, adoptive cell immunotherapy has shown promising results. But despite the efficacy seen in the clinic, there are concerns with the complexity of treatment and associated side effects. Therefore, there is still a need for better understanding of how different components of the immune system react to the presence of tumor. In this study, healthy human peripheral blood mononuclear cells (PBMCs) were used to examine the immune response in a mouse model with residual human ovarian tumor, where natural killer (NK) cells were found to be the effector cells that elicited an anti-tumor response. Presence of tumor was found to stimulate NK cell expansion and cytotoxicity in mice treated intraperitoneally (IP) with PBMCs+Interleukin-2 (IL- 2). Intravenous (IV) adoptive transfer of isolated NK cells has been attempted in ovarian cancer patients before, but showed lack of persistence in patients resulting in lack of anti-tumor efficacy. Experiments in this study highlight the significance of NK cell-cytotoxic response to tumor, which may be attributed to interacting immune cell types in the PBMC population (when treated IP), as opposed to clinically used isolated NK cells showing lack of anti-tumor efficacy in ovarian cancer patients (when treated IV).iiiNK cell immunotherapy is mainly limited by insufficient numbers generated for adoptive transfer, limited in vivo life span after adoptive transfer, lack of cytotoxicity and some logistical concerns that impede its widespread implementation. Therefore there is a need to develop methods of NK cell expansion that provide stimulation similar to other immune cell types in the PBMC population. The second part of this study utilizes a method of in vivo NK cell expansion using a particle-based approach in which plasma membranes of K562-MB21-41BBL cells (K562 cells expressing membrane-bound IL-21 and 41BB ligand) are used for specific NK cell expansion from PBMCs. NK cells expanded with this method were cytotoxic, showed in vivo persistence and biodistribution in different organs.Collectively, these studies show that NK cells are a major innate immune component that can recognize and kill the tumor. Their cytotoxic ability, using particle-based stimulation, can be enhanced for a second-line treatment of relapsed tumors such as in ovarian cancer as well as other cancer types.
Show less - Date Issued
- 2015
- Identifier
- CFE0006369, ucf:51531
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006369
- Title
- THE EFFECT OF K562-IL21-2 PLASMA MEMBRANE PARTICLES ON THE PROLIFERATION OF NATURAL KILLER CELLS TO FIGHT CANCER.
- Creator
-
Prophete, Michelle, Copik, Alicja, University of Central Florida
- Abstract / Description
-
Immunotherapy has emerged as a current and future paradigm of cancer treatment, which utilizes the body's immune system to eradicate cancer. Natural Killer (NK) cells as part of the innate immune system have immense potential in their anti-tumor cytotoxic activities and host cell surveillance properties. NK cells comprise approximately five to fifteen percent of peripheral blood lymphocytes and can be proliferated in vitro using recently developed methods with co-cultures with feeder cells ...
Show moreImmunotherapy has emerged as a current and future paradigm of cancer treatment, which utilizes the body's immune system to eradicate cancer. Natural Killer (NK) cells as part of the innate immune system have immense potential in their anti-tumor cytotoxic activities and host cell surveillance properties. NK cells comprise approximately five to fifteen percent of peripheral blood lymphocytes and can be proliferated in vitro using recently developed methods with co-cultures with feeder cells (derived from engineered tumor cells) or plasma membrane (PM) particles, produced from the fore mentioned feeder cells, in combination with soluble cytokines. For efficient growth and maintenance of these NK cells, Interleukin-2 (IL-2) is utilized. IL-2 in solution, through receptor mediated signaling, stimulates proliferation of T-cells and NK cells. NK cells have lower responsiveness to IL-2 and consequently require a larger systemic dose to stimulate them as opposed to competing cell populations that have higher expression of receptors for IL-2, such as T-cells, which can have the effect of lower effective stimulation of NK cell growth. Such difference in the stimulatory capability of IL-2 toward NK cells and the short circulation lifetime of soluble IL-2 require higher dosages of soluble IL-2 for effective in vivo NK cell proliferation for therapeutic application against cancer, but is toxic. Therefore establishing another form of IL-2 delivery that improves its specific targeting to NK cells would be beneficial and may be crucial for novel therapeutic improvement. The Copik Laboratory has made an IL-2 fusion protein construct having a membrane anchor for expression of membrane-bound IL-2 on K562-41bbl-21 cells (K562-IL21). K562-IL21 cells are selectively recognized by NK cells and stimulate their proliferation and cytotoxicity. Hence, a K562-IL21 membrane-bound IL-2 form should be targeted to NK cells with IL-2 delivery. K562-IL21-2 cells were then used to prepare PM21-2 particles which have the potential to provide NK cell targeted, long-lived form of IL-2 for use as an injectable drug for in vivo adjuvant stimulation of NK cells. The presence of IL-2 on the in the PM21-2 particle product was verified by Western blot, and ELISA. Particle preparations from the modified K562 cells should possess characteristics that allow them to possibly replace soluble IL-2 and more specifically increase the numbers or anti-tumor activity of NK cell populations. The effect of PM21-2 particles was studied in in vitro culture based experiments, which tested the effectiveness the PM21-2 particles to induce selective NK cells expansion as compared to PM21 particles in the presence or absence of soluble IL-2.
Show less - Date Issued
- 2017
- Identifier
- CFH2000353, ucf:45918
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000353
- Title
- MULTIPLE ASPECTS OF NATURAL KILLER CELL EXPANSION IN RELEVANCE TO IMMUNOTHERAPY FOR HEMATOLOGIC MALIGNANCIES.
- Creator
-
Colosimo, Dominic, Borgon, Robert, University of Central Florida
- Abstract / Description
-
Natural Killer (NK) cells are a subset of lymphocytes that regulate adaptive immune responses and utilize "missing self" recognition to activate anti-tumor and anti-viral cytotoxicity. Clinical research, as well as murine and ex vivo models, have shown that a variety of NK cell applications have proven useful as immunotherapeutic treatments for patients with hematologic malignancies. However, the selective expansion of NK cells to yield relevant amounts of these lymphocytes has been a major...
Show moreNatural Killer (NK) cells are a subset of lymphocytes that regulate adaptive immune responses and utilize "missing self" recognition to activate anti-tumor and anti-viral cytotoxicity. Clinical research, as well as murine and ex vivo models, have shown that a variety of NK cell applications have proven useful as immunotherapeutic treatments for patients with hematologic malignancies. However, the selective expansion of NK cells to yield relevant amounts of these lymphocytes has been a major hurdle in the development of methods for clinical therapeutic use. Here, we demonstrate a novel ex vivo expansion method utilizing k562 leukemic cell lines and soluble cytokines as well as a novel method utilizing isolated plasma membranes of genetically engineered tumor cell lines that could be of relevance to in vivo NK cell expansion. Also, the ligand expression by canonical feeder cell lines used for NK cell expansion and our isolated plasma membranes were compared via ligand quantification by western blot quantification of 4-1BB ligand. In an adjunct study, we sought to better characterize these expansion environments by investigating the glucose metabolism of NK cells using fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl)Amino)-2-Deoxyglucose (2-NBDG) and the glycolysis inhibitor 2-Deoxy-D-Glucose (2-DG).
Show less - Date Issued
- 2012
- Identifier
- CFH0004252, ucf:44917
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004252