Current Search: nonholonomic (x)
View All Items
- Title
- REAL-TIME TRAJECTORY PLANNING FOR GROUNDAND AERIAL VEHICLES IN A DYNAMIC ENVIRONMENT.
- Creator
-
Yang, Jian, Qu, Zhihua, University of Central Florida
- Abstract / Description
-
In this dissertation, a novel and generic solution of trajectory generation is developed and evaluated for ground and aerial vehicles in a dynamic environment. By explicitly considering a kinematic model of the ground vehicles, the family of feasible trajectories and their corresponding steering controls are derived in a closed form and are expressed in terms of one adjustable parameter for the purpose of collision avoidance. A collision-avoidance condition is developed for the dynamically...
Show moreIn this dissertation, a novel and generic solution of trajectory generation is developed and evaluated for ground and aerial vehicles in a dynamic environment. By explicitly considering a kinematic model of the ground vehicles, the family of feasible trajectories and their corresponding steering controls are derived in a closed form and are expressed in terms of one adjustable parameter for the purpose of collision avoidance. A collision-avoidance condition is developed for the dynamically changing environment, which consists of a time criterion and a geometrical criterion. By imposing this condition, one can determine a family of collision-free paths in a closed form. Then, optimization problems with respect to different performance indices are setup to obtain optimal solutions from the feasible trajectories. Among these solutions, one with respect to the near-shortest distance and another with respect to the near-minimal control energy are analytical and simple. These properties make them good choices for real-time trajectory planning. Such optimal paths meet all boundary conditions, are twice differentiable, and can be updated in real time once a change in the environment is detected. Then this novel method is extended to 3D space to find a real-time optimal path for aerial vehicles. After that, to reflect the real applications, obstacles are classified to two types: "hard" obstacles that must be avoided, and "soft" obstacles that can be run over/through. Moreover, without losing generality, avoidance criteria are extended to obstacles with any geometric shapes. This dissertation also points out that the emphases of the future work are to consider other constraints such as the bounded velocity and so on. The proposed method is illustrated by computer simulations.
Show less - Date Issued
- 2008
- Identifier
- CFE0002031, ucf:47594
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002031
- Title
- COVERAGE PATH PLANNING AND CONTROL FOR AUTONOMOUS MOBILE ROBOTS.
- Creator
-
balakrishnan, mohanakrishnan, Guo, Yi, University of Central Florida
- Abstract / Description
-
Coverage control has many applications such as security patrolling, land mine detectors, and automatic vacuum cleaners. This Thesis presents an analytical approach for generation of control inputs for a non-holonomic mobile robot in coverage control. Neural Network approach is used for complete coverage of a given area in the presence of stationary and dynamic obstacles. A complete coverage algorithm is used to determine the sequence of points. Once the sequences of points are determined a...
Show moreCoverage control has many applications such as security patrolling, land mine detectors, and automatic vacuum cleaners. This Thesis presents an analytical approach for generation of control inputs for a non-holonomic mobile robot in coverage control. Neural Network approach is used for complete coverage of a given area in the presence of stationary and dynamic obstacles. A complete coverage algorithm is used to determine the sequence of points. Once the sequences of points are determined a smooth trajectory characterized by fifth order polynomial having second order continuity is generated. And the slope of the curve at each point is calculated from which the control inputs are generated analytically. Optimal trajectory is generated using a method given in research literature and a qualitative analysis of the smooth trajectory is done. Cooperative sweeping of multirobots is achieved by dividing the area to be covered into smaller areas depending on the number of robots. Once the area is divided into sub areas, each robot is assigned a sub area for cooperative sweeping.
Show less - Date Issued
- 2005
- Identifier
- CFE0000641, ucf:46497
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000641
- Title
- A THIRD-ORDER DIFFERENTIAL STEERING ROBOT AND TRAJECTORY GENERATION IN THE PRESENCE OF MOVING OBSTACLES.
- Creator
-
An, Vatana, Qu, Zhihua, University of Central Florida
- Abstract / Description
-
In this thesis, four robots will be used to implement a collision-free trajectory planning/replanning algorithm. The existence of a chained form transformation so that the robot's model can be control in canonical form will be analyzed and proved. A trajectory generation for obstacles avoidance will be derived, simulated, and implemented. A specific PC based control algorithm will be developed. Chapter two describes two wheels differential drive robot modeling and existence of...
Show moreIn this thesis, four robots will be used to implement a collision-free trajectory planning/replanning algorithm. The existence of a chained form transformation so that the robot's model can be control in canonical form will be analyzed and proved. A trajectory generation for obstacles avoidance will be derived, simulated, and implemented. A specific PC based control algorithm will be developed. Chapter two describes two wheels differential drive robot modeling and existence of controllable canonical chained form. Chapter 3 describes criterion for avoiding dynamic objects, a feasible collision-free trajectory parameterization, and solution to steering velocity. Chapter 4 describes robot implementation, pc wireless interface, and strategy to send and receive information wirelessly. The main robot will be moving in a dynamically changing environment using canonical chained form. The other three robots will be used as moving obstacles that will move with known piecewise constant velocities, and therefore, with known trajectories. Their initial positions are assumed to be known as well. The main robot will receive the command from the computer such as how fast to move and to turn in order to avoid collision. The robot will autonomously travel to the desired destination collision-free.
Show less - Date Issued
- 2006
- Identifier
- CFE0001337, ucf:46968
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001337
- Title
- CONTROL OF NONHOLONOMIC SYSTEMS.
- Creator
-
Yuan, Hongliang, Qu, Zhihua, University of Central Florida
- Abstract / Description
-
Many real-world electrical and mechanical systems have velocity-dependent constraints in their dynamic models. For example, car-like robots, unmanned aerial vehicles, autonomous underwater vehicles and hopping robots, etc. Most of these systems can be transformed into a chained form, which is considered as a canonical form of these nonholonomic systems. Hence, study of chained systems ensure their wide applicability. This thesis studied the problem of continuous feed-back control of the...
Show moreMany real-world electrical and mechanical systems have velocity-dependent constraints in their dynamic models. For example, car-like robots, unmanned aerial vehicles, autonomous underwater vehicles and hopping robots, etc. Most of these systems can be transformed into a chained form, which is considered as a canonical form of these nonholonomic systems. Hence, study of chained systems ensure their wide applicability. This thesis studied the problem of continuous feed-back control of the chained systems while pursuing inverse optimality and exponential convergence rates, as well as the feed-back stabilization problem under input saturation constraints. These studies are based on global singularity-free state transformations and controls are synthesized from resulting linear systems. Then, the application of optimal motion planning and dynamic tracking control of nonholonomic autonomous underwater vehicles is considered. The obtained trajectories satisfy the boundary conditions and the vehicles' kinematic model, hence it is smooth and feasible. A collision avoidance criteria is set up to handle the dynamic environments. The resulting controls are in closed forms and suitable for real-time implementations. Further, dynamic tracking controls are developed through the Lyapunov second method and back-stepping technique based on a NPS AUV II model. In what follows, the application of cooperative surveillance and formation control of a group of nonholonomic robots is investigated. A designing scheme is proposed to achieves a rigid formation along a circular trajectory or any arbitrary trajectories. The controllers are decentralized and are able to avoid internal and external collisions. Computer simulations are provided to verify the effectiveness of these designs.
Show less - Date Issued
- 2009
- Identifier
- CFE0002683, ucf:48220
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002683
- Title
- A Triangulation Based Coverage Path Planning For a Mobile Robot With Circular Sensing Range.
- Creator
-
An, Vatana, Qu, Zhihua, Haralambous, Michael, Mikhael, Wasfy, University of Central Florida
- Abstract / Description
-
In this dissertation, two coverage path planning (CPP) approaches for a nonholonomic mobile robot are proposed. The first approach is the Local Coverage Path Planning (LCPP) approach which is designed for all sensing ranges. The second approach is the Global Coverage Path Planning (GCPP) approach which is designed for sufficient sensing range that can observe all points of interests in the target region (TR). The LCPP approach constructs CP after finding observer points for all local regions...
Show moreIn this dissertation, two coverage path planning (CPP) approaches for a nonholonomic mobile robot are proposed. The first approach is the Local Coverage Path Planning (LCPP) approach which is designed for all sensing ranges. The second approach is the Global Coverage Path Planning (GCPP) approach which is designed for sufficient sensing range that can observe all points of interests in the target region (TR). The LCPP approach constructs CP after finding observer points for all local regions in the TR. The GCPP approach computes observer points after CP construction. Beginning with the sample TR, the LCPP approach requires 8 algorithms to find a smooth CP and sufficient number of observers for complete coverage. The Global Coverage Path Planning approach requires 17 algorithms to find the smooth CP with sufficient number of observers for completed coverage. The worst case running time for both approaches are quadratic which is consider to be very fast as compared to previous works reported in the literature. The main technical contributions of both approaches are to provide a holistic solution that segments any TR, uses triangulation to determine the line of sights and observation points, and then compute the smooth and collision-free CP. Both approaches provide localization, speed control, curvature control, CP length control, and smooth CP control. The first approach has applications in automate vacuum cleaning, search and rescue mission, spray painting, and etc. The second approach is best used in military and space applications as it requires infinite sensing range which only resource rich organizations can afford. At the very least, the second approach provides simulation opportunity and upper bound cost estimate for CPP. Both approaches will lead to a search strategy that provides the shortest CP with the minimum number of observer and with the shortest running time for any sensing range.
Show less - Date Issued
- 2017
- Identifier
- CFE0006853, ucf:51745
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006853