Current Search: optical solitons (x)
View All Items
- Title
- DISCRETE SURFACE SOLITONS.
- Creator
-
Suntsov, Sergiy, Stegeman, George, University of Central Florida
- Abstract / Description
-
Surface waves exist along the interfaces between two different media and are known to display properties that have no analogue in continuous systems. In years past, they have been the subject of many studies in a diverse collection of scientific disciplines. In optics, one of the mechanisms through which optical surface waves can exist is material nonlinearity. Until recently, most of the activity in this area was focused on interfaces between continuous media but no successful experiments...
Show moreSurface waves exist along the interfaces between two different media and are known to display properties that have no analogue in continuous systems. In years past, they have been the subject of many studies in a diverse collection of scientific disciplines. In optics, one of the mechanisms through which optical surface waves can exist is material nonlinearity. Until recently, most of the activity in this area was focused on interfaces between continuous media but no successful experiments have been reported. However, the growing interest that nonlinear discrete optics has attracted in the last two decades has raised the question of whether nonlinear surface waves can exist in discrete optical systems. In this work, a detailed experimental study of linear and nonlinear optical wave propagation at the interface between a discrete one-dimensional Kerr-nonlinear system and a continuous medium (slab waveguide) as well as at the interface between two dissimilar waveguide lattices is presented. The major part of this dissertation is devoted to the first experimental observation of discrete surface solitons in AlGaAs Kerr-nonlinear arrays of weakly coupled waveguides. These nonlinear surface waves are found to localize in the channels at and near the boundary of the waveguide array. The key unique property of discrete surface solitons, namely the existence of a power threshold, is investigated in detail. The second part of this work deals with the linear light propagation properties at the interface between two dissimilar waveguide arrays (so-called waveguide array hetero-junction). The possibility of three different types of linear interface modes is theoretically predicted and the existence of one of them, namely the staggered/staggered mode, is confirmed experimentally. The last part of the dissertation is dedicated to the investigation of the nonlinear properties of AlGaAs waveguide array hetero-junctions. The predicted three different types of discrete hybrid surface solitons are analyzed theoretically. The experimental results on observation of in-phase/in-phase hybrid surface solitons localized at channels on either side of the interface are presented and different nature of their formation is discussed.
Show less - Date Issued
- 2007
- Identifier
- CFE0001989, ucf:47426
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001989
- Title
- OPTICAL WAVE PROPAGATION IN DISCRETE WAVEGUIDE ARRAYS.
- Creator
-
Hudock, Jared, Christodoulides, Demetrios, University of Central Florida
- Abstract / Description
-
The propagation dynamics of light in optical waveguide arrays is characteristic of that encountered in discrete systems. As a result, it is possible to engineer the diffraction properties of such structures, which leads to the ability to control the flow of light in ways that are impossible in continuous media. In this work, a detailed theoretical investigation of both linear and nonlinear optical wave propagation in one- and two-dimensional waveguide lattices is presented. The ability to...
Show moreThe propagation dynamics of light in optical waveguide arrays is characteristic of that encountered in discrete systems. As a result, it is possible to engineer the diffraction properties of such structures, which leads to the ability to control the flow of light in ways that are impossible in continuous media. In this work, a detailed theoretical investigation of both linear and nonlinear optical wave propagation in one- and two-dimensional waveguide lattices is presented. The ability to completely overcome the effects of discrete diffraction through the mutual trapping of two orthogonally polarized coherent beams interacting in Kerr nonlinear arrays of birefringent waveguides is discussed. The existence and stability of such highly localized vector discrete solitons is analyzed and compared to similar scenarios in a single birefringent waveguide. This mutual trapping is also shown to occur within the first few waveguides of a semi-infinite array leading to the existence of vector discrete surface waves. Interfaces between two detuned semi-infinite waveguide arrays or waveguide array heterojunctions and their possible applications are also considered. It is shown that the detuning between the two arrays shifts the dispersion relation of one array with respect to the other. Consequently, these systems provide spatial filtering functions that may prove useful in future all-optical networks. In addition by exploiting the unique diffraction properties of discrete arrays, diffraction compensation can be achieved in a way analogous to dispersion compensation in dispersion managed optical fiber systems. Finally, it is demonstrated that both the linear (diffraction) and nonlinear dynamics of two-dimensional waveguide arrays are significantly more complex and considerably more versatile than their one-dimensional counterparts. As is the case in one-dimensional arrays, the discrete diffraction properties of these two-dimensional lattices can be effectively altered depending on the propagation Bloch k-vector within the first Brillouin zone. In general, this diffraction behavior is anisotropic and as a result, allows the existence of a new class of discrete elliptic solitons in the nonlinear regime. Moreover, such arrays support two-dimensional vector soliton states, and their existence and stability are also thoroughly explored in this work.
Show less - Date Issued
- 2005
- Identifier
- CFE0000833, ucf:46687
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000833
- Title
- DISCRETE NONLINEAR WAVE PROPAGATION IN KERR NONLINEAR MEDIA.
- Creator
-
Meier, Joachim, Stegeman, George, University of Central Florida
- Abstract / Description
-
Discrete optical systems are a subgroup of periodic structures in which the evolution of a continuous electromagnetic field can be described by a discrete model. In this model, the total field is the sum of localized, discrete modes. Weakly coupled arrays of single mode channel waveguides have been known to fall into this class of systems since the late 1960's. Nonlinear discrete optics has received a considerable amount of interest in the last few years, triggered by the experimental...
Show moreDiscrete optical systems are a subgroup of periodic structures in which the evolution of a continuous electromagnetic field can be described by a discrete model. In this model, the total field is the sum of localized, discrete modes. Weakly coupled arrays of single mode channel waveguides have been known to fall into this class of systems since the late 1960's. Nonlinear discrete optics has received a considerable amount of interest in the last few years, triggered by the experimental realization of discrete solitons in a Kerr nonlinear AlGaAs waveguide array by H. Eisenberg and coworkers in 1998. In this work a detailed experimental investigation of discrete nonlinear wave propagation and the interactions between beams, including discrete solitons, in discrete systems is reported for the case of a strong Kerr nonlinearity. The possibility to completely overcome "discrete" diffraction and create highly localized solitons, in a scalar or vector geometry, as well as the limiting factors in the formation of such nonlinear waves is discussed. The reversal of the sign of diffraction over a range of propagation angles leads to the stability of plane waves in a material with positive nonlinearity. This behavior can not be found in continuous self-focusing materials where plane waves are unstable against perturbations. The stability of plane waves in the anomalous diffraction region, even at highest powers, has been experimentally verified. The interaction of high power beams and discrete solitons in arrays has been studied in detail. Of particular interest is the experimental verification of a theoretically predicted unique, all optical switching scheme, based on the interaction of a so called "blocker" soliton with a second beam. This switching method has been experimentally realized for both the coherent and incoherent case. Limitations of such schemes due to nonlinear losses at the required high powers are shown.
Show less - Date Issued
- 2004
- Identifier
- CFE0000186, ucf:46176
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000186
- Title
- OPTICAL SOLITONS IN PERIODIC STRUCTURES.
- Creator
-
Makris, Konstantinos, Christodoulides, Demetrios, University of Central Florida
- Abstract / Description
-
By nature discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one-and two-dimensional nonlinear waveguide arrays. In recent years such lattice structures have been implemented or induced in a variety of material systems including those with cubic (Kerr), quadratic,...
Show moreBy nature discrete solitons represent self-trapped wavepackets in nonlinear periodic structures and result from the interplay between lattice diffraction (or dispersion) and material nonlinearity. In optics, this class of self-localized states has been successfully observed in both one-and two-dimensional nonlinear waveguide arrays. In recent years such lattice structures have been implemented or induced in a variety of material systems including those with cubic (Kerr), quadratic, photorefractive, and liquid-crystal nonlinearities. In all cases the underlying periodicity or discreteness leads to new families of optical solitons that have no counterpart whatsoever in continuous systems. In the first part of this dissertation, a theoretical investigation of linear and nonlinear optical wave propagation in semi-infinite waveguide arrays is presented. In particular, the properties and the stability of surface solitons at the edge of Kerr (AlGaAs) and quadratic (LiNbO3) lattices are examined. Hetero-structures of two dissimilar semi-infinite arrays are also considered. The existence of hybrid solitons in these latter types of structures is demonstrated. Rabi-type optical transitions in z-modulated waveguide arrays are theoretically demonstrated. The corresponding coupled mode equations, that govern the energy oscillations between two different transmission bands, are derived. The results are compared with direct beam propagation simulations and are found to be in excellent agreement with coupled mode theory formulations. In the second part of this thesis, the concept of parity-time-symmetry is introduced in the context of optics. More specifically, periodic potentials associated with PT-symmetric Hamiltonians are numerically explored. These new optical structures are found to exhibit surprising characteristics. These include the possibility of abrupt phase transitions, band merging, non-orthogonality, non-reciprocity, double refraction, secondary emissions, as well as power oscillations. Even though gain/loss is present in this class of periodic potentials, the propagation eigenvalues are entirely real. This is a direct outcome of the PT-symmetry. Finally, discrete solitons in PT-symmetric optical lattices are examined in detail.
Show less - Date Issued
- 2008
- Identifier
- CFE0002013, ucf:47610
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002013
- Title
- QUADRATIC SPATIAL SOLITON INTERACTIONS.
- Creator
-
Jankovic, Ladislav, Stegeman, George I., University of Central Florida
- Abstract / Description
-
Quadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO3) and periodically poled potassium titanyl phosphate (KTP) crystals....
Show moreQuadratic spatial soliton interactions were investigated in this Dissertation. The first part deals with characterizing the principal features of multi-soliton generation and soliton self-reflection. The second deals with two beam processes leading to soliton interactions and collisions. These subjects were investigated both theoretically and experimentally. The experiments were performed by using potassium niobate (KNBO3) and periodically poled potassium titanyl phosphate (KTP) crystals. These particular crystals were desirable for these experiments because of their large nonlinear coefficients and, more importantly, because the experiments could be performed under non-critical-phase-matching (NCPM) conditions. The single soliton generation measurements, performed on KNBO3 by launching the fundamental component only, showed a broad angular acceptance bandwidth which was important for the soliton collisions performed later. Furthermore, at high input intensities multi-soliton generation was observed for the first time. The influence on the multi-soliton patterns generated of the input intensity and beam symmetry was investigated. The combined experimental and theoretical efforts indicated that spatial and temporal noise on the input laser beam induced multi-soliton patterns. Another research direction pursued was intensity dependent soliton routing by using of a specially engineered quadratically nonlinear interface within a periodically poled KTP sample. This was the first time demonstration of the self-reflection phenomenon in a system with a quadratic nonlinearity. The feature investigated is believed to have a great potential for soliton routing and manipulation by engineered structures. A detailed investigation was conducted on two soliton interaction and collision processes. Birth of an additional soliton resulting from a two soliton collision was observed and characterized for the special case of a non-planar geometry. A small amount of spiraling, up to 30 degrees rotation, was measured in the experiments performed. The parameters relevant for characterizing soliton collision processes were also studied in detail. Measurements were performed for various collision angles (from 0.2 to 4 degrees), phase mismatch, relative phase between the solitons and the distance to the collision point within the sample (which affects soliton formation). Both the individual and combined effects of these collision variables were investigated. Based on the research conducted, several all-optical switching scenarios were proposed.
Show less - Date Issued
- 2004
- Identifier
- CFE0000090, ucf:46135
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000090
- Title
- STABLE SPATIAL SOLITONS IN SEMICONDUCTOROPTICAL AMPLIFIERS.
- Creator
-
ultanir, erdem ahmet, Stegeman, George I., University of Central Florida
- Abstract / Description
-
A spatial soliton is a shape invariant self guided beam of light or a self induced waveguide.Spatial solitons appear as a result of the balance of diffraction and nonlinear focusing in asystem. They have been observed in many different conservative media in the last couple ofyears. Solitons are ubiquitous, because of the probability of using their interactions in opticaldata processing, communications etc. Up to now due to the power required to generate thesolitons, and the response times of...
Show moreA spatial soliton is a shape invariant self guided beam of light or a self induced waveguide.Spatial solitons appear as a result of the balance of diffraction and nonlinear focusing in asystem. They have been observed in many different conservative media in the last couple ofyears. Solitons are ubiquitous, because of the probability of using their interactions in opticaldata processing, communications etc. Up to now due to the power required to generate thesolitons, and the response times of the soliton supporting media, these special waves of naturecould not penetrate the applications arena. Semiconductors, with their resonant nonlinearities, arethought to be ideal candidates for fast switching, low power spatial solitons.In this dissertation it is shown theoretically and experimentally that it is possible toobserve stable spatial solitons in a periodically patterned semiconductor optical amplifier(PPSOA). The solitons have unique beam profiles that change only with system parameters, likepumping current, etc. Their coherent and incoherent interactions which could lead to all opticaldevices have been investigated experimentally and theoretically. The formation of filaments ormodulational instability has been studied theoretically and yielded analytical formulae forevaluating the filament gain and the maximum spatial frequencies in PPSOA devices.Furthermore, discrete array amplifiers have been analyzed numerically for discrete solitons, andthe prospect of using multi peak discrete solitons as laser amplifiers is discussed.
Show less - Date Issued
- 2004
- Identifier
- CFE0000142, ucf:46153
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000142
- Title
- OPTICAL NONLINEAR INTERACTIONS IN DIELECTRIC NANO-SUSPENSIONS.
- Creator
-
El-Ganainy, Ramy, Christodoulides, Demetrios, University of Central Florida
- Abstract / Description
-
This work is divided into two main parts. In the first part (chapters 2-7) we consider the nonlinear response of nano-particle colloidal systems. Starting from the Nernst-Planck and Smoluchowski equations, we demonstrate that in these arrangements the underlying nonlinearities as well as the nonlinear Rayleigh losses depend exponentially on optical intensity. Two different nonlinear regimes are identified depending on the refractive index contrast of the nanoparticles involved and the...
Show moreThis work is divided into two main parts. In the first part (chapters 2-7) we consider the nonlinear response of nano-particle colloidal systems. Starting from the Nernst-Planck and Smoluchowski equations, we demonstrate that in these arrangements the underlying nonlinearities as well as the nonlinear Rayleigh losses depend exponentially on optical intensity. Two different nonlinear regimes are identified depending on the refractive index contrast of the nanoparticles involved and the interesting prospect of self-induced transparency is demonstrated. Soliton stability is systematically analyzed for both 1D and 2D configurations and their propagation dynamics in the presence of Rayleigh losses is examined. We also investigate the modulation instability of plane waves and the transverse instabilities of soliton stripe beams propagating in nonlinear nano-suspensions. We show that in these systems, the process of modulational instability depends on the boundary conditions. On the other hand, the transverse instability of soliton stripes can exhibit new features as a result of 1D collapse caused by the exponential nonlinearity. Many-body effects on the systems' nonlinear response are also examined. Mayer cluster expansions are used in order to investigate particle-particle interactions. We show that the optical nonlinearity of these nano-suspensions can range anywhere from exponential to polynomial depending on the initial concentration and the chemistry of the electrolyte solution. The consequence of these inter-particle interactions on the soliton dynamics and their stability properties are also studied. The second part deals with linear and nonlinear properties of optical nano-wires and the coupled mode formalism of parity-time (PT) symmetric waveguides. Dispersion properties of AlGaAs nano-wires are studied and it is shown that the group velocity dispersion in such waveguides can be negative, thus enabling temporal solitons. We have also studied power flow in nano-waveguides and we have shown that under certain conditions, optical pulses propagating in such structures will exhibit power circulations. Finally PT symmetric waveguides were investigated and a suitable coupled mode theory to describe these systems was developed.
Show less - Date Issued
- 2009
- Identifier
- CFE0002847, ucf:48538
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002847
- Title
- ACCELERATING OPTICAL AIRY BEAMS.
- Creator
-
Siviloglou, Georgios, CHRISTODOULIDES, DEMETRIOS, University of Central Florida
- Abstract / Description
-
Over the years, non-spreading or non-diffracting wave configurations have been systematically investigated in optics. Perhaps the best known example of a diffraction-free optical wave is the so-called Bessel beam, first suggested and observed by Durnin et al. This work sparked considerable theoretical and experimental activity and paved the way toward the discovery of other interesting non-diffracting solutions. In 1979 Berry and Balazs made an important observation within the context of...
Show moreOver the years, non-spreading or non-diffracting wave configurations have been systematically investigated in optics. Perhaps the best known example of a diffraction-free optical wave is the so-called Bessel beam, first suggested and observed by Durnin et al. This work sparked considerable theoretical and experimental activity and paved the way toward the discovery of other interesting non-diffracting solutions. In 1979 Berry and Balazs made an important observation within the context of quantum mechanics: they theoretically demonstrated that the Schrödinger equation describing a free particle can exhibit a non-spreading Airy wavepacket solution. This work remained largely unnoticed in the literature-partly because such wavepackets cannot be readily synthesized in quantum mechanics. In this dissertation we investigate both theoretically and experimentally the acceleration dynamics of non-spreading optical Airy beams in both one- and two-dimensional configurations. We show that this class of finite energy waves can retain their intensity features over several diffraction lengths. The possibility of other physical realizations involving spatio-temporal Airy wavepackets is also considered. As demonstrated in our experiments, these Airy beams can exhibit unusual features such as the ability to remain quasi-diffraction-free over long distances while their intensity features tend to freely accelerate during propagation. We have demonstrated experimentally that optical Airy beams propagating in free space can perform ballistic dynamics akin to those of projectiles moving under the action of gravity. The parabolic trajectories of these beams as well as the motion of their center of gravity were observed in good agreement with theory. Another remarkable property of optical Airy beams is their resilience in amplitude and phase perturbations. We show that this class of waves tends to reform during propagation in spite of the severity of the imposed perturbations. In all occasions the reconstruction of these beams is interpreted through their internal transverse power flow. The robustness of these optical beams in scattering and turbulent environments was also studied. The experimental observation of self-trapped Airy beams in unbiased nonlinear photorefractive media is also reported. This new class of non-local self-localized beams owes its existence to carrier diffusion effects as opposed to self-focusing. These finite energy Airy states exhibit a highly asymmetric intensity profile that is determined by the inherent properties of the nonlinear crystal. In addition, these wavepackets self-bend during propagation at an acceleration rate that is independent of the thermal energy associated with two-wave mixing diffusion photorefractive nonlinearity.
Show less - Date Issued
- 2010
- Identifier
- CFE0003193, ucf:48569
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003193
- Title
- Particle Manipulation Via Optical Forces and Engineering Soft-Matter Systems With Tunable Nonlinearities.
- Creator
-
Fardad, Shima, Christodoulides, Demetrios, Hagan, David, Amezcua Correa, Rodrigo, Likamwa, Patrick, Chen, Zhigang, University of Central Florida
- Abstract / Description
-
One of the most intriguing properties of light-matter interaction is the ability of an electromagnetic field to exert mechanical forces on polarizable objects. This phenomenon is a direct consequence of the fact that light carries momentum, which in turn can be transferred to matter. Mediated by scattering, this interaction usually manifests itself as a (")pushing force(") in the direction of beam propagation. However, it is possible to judiciously engineer these optical forces, either by...
Show moreOne of the most intriguing properties of light-matter interaction is the ability of an electromagnetic field to exert mechanical forces on polarizable objects. This phenomenon is a direct consequence of the fact that light carries momentum, which in turn can be transferred to matter. Mediated by scattering, this interaction usually manifests itself as a (")pushing force(") in the direction of beam propagation. However, it is possible to judiciously engineer these optical forces, either by tailoring particle polarizability, and/or by structuring the incident light field. As a simple example, a tightly focused laser beam demonstrates strong gradient forces, which may attract and even trap particles with positive polarizability in the focal volume. The opposite occurs in the regime of negative polarizability, where particles are expelled from the regions of highest intensity. Based on this fundamental principle, one can actively shape the beam using spatial light modulators to manipulate individual objects as well as ensembles of particles suspended in a liquid. In the latter case, a modulation of the local particle concentration is associated with changes of the effective refractive index. The result is an artificial nonlinear medium, whose Kerr-type response can be readily tuned by the parameters of its constituent particles.In the course of this work, we introduce a new class of synthetic colloidal suspensions exhibiting negative polarizabilities, and observe for the first time robust propagation and enhanced transmission of self-trapped light over long distances. Such light penetration in strongly scattering environments is enabled by the interplay between optical forces and self-activated transparency effects. We explore various approaches to the design of negative-polarizability arrangements, including purely dielectric as well as metallic and hybrid nanoparticles. In particular, we find that plasmonic resonances allow for extremely high and spectrally tunable polarizabilities, leading to unique nonlinear light-matter interactions. Here, for the first time we were able to observe plasmonic resonant solitons over more than 25 diffraction lengths, in colloidal nanosuspensions.
Show less - Date Issued
- 2014
- Identifier
- CFE0005610, ucf:50239
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005610