Current Search: processing elements (x)
View All Items
- Title
- OFF-CHIP COMMUNICATIONS ARCHITECTURES FOR HIGH THROUGHPUT NETWORK PROCESSORS.
- Creator
-
Engel, Jacob, Kocak, Taskin, University of Central Florida
- Abstract / Description
-
In this work, we present off-chip communications architectures for line cards to increase the throughput of the currently used memory system. In recent years there is a significant increase in memory bandwidth demand on line cards as a result of higher line rates, an increase in deep packet inspection operations and an unstoppable expansion in lookup tables. As line-rate data and NPU processing power increase, memory access time becomes the main system bottleneck during data store/retrieve...
Show moreIn this work, we present off-chip communications architectures for line cards to increase the throughput of the currently used memory system. In recent years there is a significant increase in memory bandwidth demand on line cards as a result of higher line rates, an increase in deep packet inspection operations and an unstoppable expansion in lookup tables. As line-rate data and NPU processing power increase, memory access time becomes the main system bottleneck during data store/retrieve operations. The growing demand for memory bandwidth contrasts the notion of indirect interconnect methodologies. Moreover, solutions to the memory bandwidth bottleneck are limited by physical constraints such as area and NPU I/O pins. Therefore, indirect interconnects are replaced with direct, packet-based networks such as mesh, torus or k-ary n-cubes. We investigate multiple k-ary n-cube based interconnects and propose two variations of 2-ary 3-cube interconnect called the 3D-bus and 3D-mesh. All of the k-ary n-cube interconnects include multiple, highly efficient techniques to route, switch, and control packet flows in order to minimize congestion spots and packet loss. We explore the tradeoffs between implementation constraints and performance. We also developed an event-driven, interconnect simulation framework to evaluate the performance of packet-based off-chip k-ary n-cube interconnect architectures for line cards. The simulator uses the state-of-the-art software design techniques to provide the user with a flexible yet robust tool, that can emulate multiple interconnect architectures under non-uniform traffic patterns. Moreover, the simulator offers the user with full control over network parameters, performance enhancing features and simulation time frames that make the platform as identical as possible to the real line card physical and functional properties. By using our network simulator, we reveal the best processor-memory configuration, out of multiple configurations, that achieves optimal performance. Moreover, we explore how network enhancement techniques such as virtual channels and sub-channeling improve network latency and throughput. Our performance results show that k-ary n-cube topologies, and especially our modified version of 2-ary 3-cube interconnect - the 3D-mesh, significantly outperform existing line card interconnects and are able to sustain higher traffic loads. The flow control mechanism proved to extensively reduce hot-spots, load-balance areas of high traffic rate and achieve low transmission failure rate. Moreover, it can scale to adopt more memories and/or processors and as a result to increase the line card's processing power.
Show less - Date Issued
- 2005
- Identifier
- CFE0000734, ucf:46581
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000734
- Title
- Towards Energy-Efficient and Reliable Computing: From Highly-Scaled CMOS Devices to Resistive Memories.
- Creator
-
Salehi Mobarakeh, Soheil, DeMara, Ronald, Fan, Deliang, Turgut, Damla, University of Central Florida
- Abstract / Description
-
The continuous increase in transistor density based on Moore's Law has led us to highly scaled Complementary Metal-Oxide Semiconductor (CMOS) technologies. These transistor-based process technologies offer improved density as well as a reduction in nominal supply voltage. An analysis regarding different aspects of 45nm and 15nm technologies, such as power consumption and cell area to compare these two technologies is proposed on an IEEE 754 Single Precision Floating-Point Unit implementation....
Show moreThe continuous increase in transistor density based on Moore's Law has led us to highly scaled Complementary Metal-Oxide Semiconductor (CMOS) technologies. These transistor-based process technologies offer improved density as well as a reduction in nominal supply voltage. An analysis regarding different aspects of 45nm and 15nm technologies, such as power consumption and cell area to compare these two technologies is proposed on an IEEE 754 Single Precision Floating-Point Unit implementation. Based on the results, using the 15nm technology offers 4-times less energy and 3-fold smaller footprint. New challenges also arise, such as relative proportion of leakage power in standby mode that can be addressed by post-CMOS technologies. Spin-Transfer Torque Random Access Memory (STT-MRAM) has been explored as a post-CMOS technology for embedded and data storage applications seeking non-volatility, near-zero standby energy, and high density. Towards attaining these objectives for practical implementations, various techniques to mitigate the specific reliability challenges associated with STT-MRAM elements are surveyed, classified, and assessed herein. Cost and suitability metrics assessed include the area of nanomagmetic and CMOS components per bit, access time and complexity, Sense Margin (SM), and energy or power consumption costs versus resiliency benefits. In an attempt to further improve the Process Variation (PV) immunity of the Sense Amplifiers (SAs), a new SA has been introduced called Adaptive Sense Amplifier (ASA). ASA can benefit from low Bit Error Rate (BER) and low Energy Delay Product (EDP) by combining the properties of two of the commonly used SAs, Pre-Charge Sense Amplifier (PCSA) and Separated Pre-Charge Sense Amplifier (SPCSA). ASA can operate in either PCSA or SPCSA mode based on the requirements of the circuit such as energy efficiency or reliability. Then, ASA is utilized to propose a novel approach to actually leverage the PV in Non-Volatile Memory (NVM) arrays using Self-Organized Sub-bank (SOS) design. SOS engages the preferred SA alternative based on the intrinsic as-built behavior of the resistive sensing timing margin to reduce the latency and power consumption while maintaining acceptable access time.
Show less - Date Issued
- 2016
- Identifier
- CFE0006493, ucf:51400
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006493