Current Search: removal (x)
Pages
-
-
Title
-
EVALUATION OF PREFERMENTATION AS A UNIT PROCESS UPON BIOLOGICAL NUTRIENT REMOVAL INCLUDING BIOKINETIC AND WASTEWATER PARAMETERS.
-
Creator
-
McCue, Terrence, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
The objective of this dissertation was to provide a controlled comparison of identical continuous flow BNR processes both with and without prefermentation in order to provide a stronger, more quantitative, technical basis for design engineers to evaluate the potential benefits of prefermentation to EBPR in treating domestic wastewater. In addition, the even less understood effect of prefermentation on denitrification kinetics and anoxic phosphorus (P) uptake was studied and quantified. Other...
Show moreThe objective of this dissertation was to provide a controlled comparison of identical continuous flow BNR processes both with and without prefermentation in order to provide a stronger, more quantitative, technical basis for design engineers to evaluate the potential benefits of prefermentation to EBPR in treating domestic wastewater. In addition, the even less understood effect of prefermentation on denitrification kinetics and anoxic phosphorus (P) uptake was studied and quantified. Other aspects of BNR performance, which might change due to use of prefermentation, will also be addressed, including anaerobic stabilization. Potential benefits to BNR processes derived from prefermentation are compared and contrasted with the more well-known benefits of primary clarification. Finally, some biokinetic parameters necessary to successfully model both the activated sludge systems and the prefermenter were determined and compared for the prefermented versus the non-prefermented system. Important findings developed during the course of this dissertation regarding the impact of prefermentation upon the performance of activated sludge treatment systems are summarized below: For a septic COD-limited (TCOD:TP < 40:1) wastewater, prefermentation was found to enhance EPBR by 27.7% at a statistical significance level of alpha=0.05 (95% confidence level). For septic P-limited (TCOD:TP > 40:1) wastewaters, prefermentation was not found to improve EBPR at a statistical significance level of alpha=0.05 (95% confidence level). The increased anaerobic P release and aerobic P uptakes due to prefermentation correlated with greater PHA formation and glycogen consumption during anaerobiosis of prefermented influent. Improvements in biological P removal of septic, non-P limited wastewater occurred even when all additional VFA production exceeded VFA requirements using typical design criteria (e.g. 6 g VFA per 1 g P removal). Prefermentation increased RBCOD content by an average of 28.8% and VFA content by an average of 18.8%, even for a septic domestic wastewater. Prefermentation increased specific anoxic denitrification rates for both COD-limited (14.6%) and P-limited (5.4%) influent wastewaters. This increase was statistically significant at alpha=0.05 for COD-limited wastewater, but not for P-limited wastewater.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001418, ucf:47052
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001418
-
-
Title
-
NUTRIENT REMOVAL FROM STORMWATER BY USING GREEN SORPTION MEDIA.
-
Creator
-
HOSSAIN, FAHIM, Chang, Dr. Ni-Bin, University of Central Florida
-
Abstract / Description
-
High nitrogen and phosphorus content in storm water runoff has affected groundwater, springs and surface water by impacting ecosystem integrity and human health. Nitrate may be toxic and can cause human health problem such as methemoglobinemia, liver damage and even cancers. Phosphorus may trigger the eutrophication issues in fresh water bodies, which could result in toxic algae and eventually endanger the source of drinking waters. Sorption media with mixes of some recycled materials, such...
Show moreHigh nitrogen and phosphorus content in storm water runoff has affected groundwater, springs and surface water by impacting ecosystem integrity and human health. Nitrate may be toxic and can cause human health problem such as methemoglobinemia, liver damage and even cancers. Phosphorus may trigger the eutrophication issues in fresh water bodies, which could result in toxic algae and eventually endanger the source of drinking waters. Sorption media with mixes of some recycled materials, such as sawdust and tire crumb, combined with sand/silt and limestone, becomes appealing for nutrient removal in environmental management. This paper presented is a specific type of functionalized filtration media, Langmuir and Freundlich isotherms with reaction kinetics for nutrient removal using a suite of batch tests represented. Pollutants of concern include ammonia, nitrite, nitrate, orthophosphate and total dissolved phosphorus. Application potential in storm water management facilities, such as dry ponds, is emphasized in terms of life expectancy and reaction kinetics. As compared to the natural soil that is selected as the control case in the column test, our green sorption media mixture is proved relatively effective in terms of removing most of the target pollutants under various influent waste loads.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002370, ucf:47803
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002370
-
-
Title
-
FLORIDA SUPERINTENDENTS' VIEWS RELATED TO THE INVOLUNTARY REMOVAL OF SCHOOL PRINCIPALS.
-
Creator
-
Bernier, Christopher, Taylor, Rosemarye, University of Central Florida
-
Abstract / Description
-
Utilizing a previously researched survey, the 67 Florida public school superintendents were asked to prioritize the Florida Principal Leadership Standards related to the removal of a single principal from the position and provide pertinent demographic information related to this individual. The following principal leadership standards were most commonly identified as important to the decision to remove a school principal: (a) human resource management, (b) decision making strategies, (c)...
Show moreUtilizing a previously researched survey, the 67 Florida public school superintendents were asked to prioritize the Florida Principal Leadership Standards related to the removal of a single principal from the position and provide pertinent demographic information related to this individual. The following principal leadership standards were most commonly identified as important to the decision to remove a school principal: (a) human resource management, (b) decision making strategies, (c) instructional leadership, (d) managing the learning environment, and (e) community and stakeholder partnerships.
Show less
-
Date Issued
-
2011
-
Identifier
-
CFE0003660, ucf:48820
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003660
-
-
Title
-
REDUCING EFFLUENT PHOSPHORUS AND NITROGEN CONCENTRATIONS FROM A STORMWATER DETENTION POND USING A CHAMBER UPFLOW FILTER AND SKIMMER (CUFS) WITH BLACK AND GOLDTM MEDIA.
-
Creator
-
Ryan, Patrick, Chang, Ni-Bin, University of Central Florida
-
Abstract / Description
-
Stormwater runoff is a known pollutant source capable of causing surface water degradation, especially in highly populated areas such as Central Florida. Wet detention ponds manage this stormwater, but most of the ponds do not remove enough nutrients, specifically nitrogen and phosphorus, to meet TMDL regulations. This research provides a possible addition to a detention pond in Seminole County, Florida using a Chamber Upflow Filter and Skimmer (CUFS), which can increase the removal of...
Show moreStormwater runoff is a known pollutant source capable of causing surface water degradation, especially in highly populated areas such as Central Florida. Wet detention ponds manage this stormwater, but most of the ponds do not remove enough nutrients, specifically nitrogen and phosphorus, to meet TMDL regulations. This research provides a possible addition to a detention pond in Seminole County, Florida using a Chamber Upflow Filter and Skimmer (CUFS), which can increase the removal of phosphorus and nitrogen by the system. Water enters the system through the skimmer, which floats on the surface of the detention pond. It travels from the skimmer to the bottom of the chamber, where heavier particles settle out before entering the upflow filter. The upflow filter contains twenty-four inches of Black and GoldTM media to remove nitrogen and phosphorus under anoxic conditions. Water flows up through the filter and out of the system, and eventually travels to Lake Jesup, a eutrophic lake. A total of twenty-eight storm events and seven baseflows were sampled from the site in Seminole County, and ten storm events were sampled from a pilot study CUFS. The results of this research show significant reductions by the Seminole County CUFS in turbidity, orthophosphorus, total phosphorus, and total suspended solids when the means were compared at a 95% confidence interval. Reductions also occurred for total nitrogen, but could not be proved by the mean comparison. The pilot scale application of the CUFS significantly reduced total nitrogen at a 95% confidence interval.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002235, ucf:47883
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002235
-
-
Title
-
Turbidity Removal Efficiency and Toxicity Issues Associated with the Chitosan-Based Dual Bio-Polymer Systems.
-
Creator
-
Hernandez, Rylee, Chopra, Manoj, Wanielista, Martin, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
Stormwater runoff can be a great concern in the State of Florida due to the impact the quality of the runoff water can have on the natural water bodies. Stormwater runoff can carry pollutants and sediments which can cause both physical and biological risks in an aquatic ecosystem such as a lake, river, or pond. Polymers, namely the chitosan-based dual polymer system, can be used remove the sediment from this runoff to ensure the safety of the state's water bodies. Three soils are used in this...
Show moreStormwater runoff can be a great concern in the State of Florida due to the impact the quality of the runoff water can have on the natural water bodies. Stormwater runoff can carry pollutants and sediments which can cause both physical and biological risks in an aquatic ecosystem such as a lake, river, or pond. Polymers, namely the chitosan-based dual polymer system, can be used remove the sediment from this runoff to ensure the safety of the state's water bodies. Three soils are used in this testing: AASTO soil classifications A-3(sandy soil) and A-2-4 (silty-sand), and a soil with a fine-grained limerock component. An optimum dose of the chitosan-based dual polymer system is first determined using jar testing. The optimum dose is the dose that reduces the final turbidity to 29 NTUS or below and creates significant flocs. The under dose and over dose are calculated based on the optimum dose. Using these dosages, field scale tests are conducted using two different treatment methods: a semi-passive treatment method and a passive treatment method. Whole effluent toxicity and residual chitosan tests are then conducted on the effluent from the field scale treatment methods. The passive treatment method is the best field scale treatment method when using the silty-sand and the soil with a fine-grained limerock component. The semi-passive treatment method is the best field scale treatment method when using the sandy soil. The passive treatment method with the silty-sand achieves a final turbidity of 123.9 NTUS (88.45% removal). The passive treatment method with the soil with a fine-grained limerock component achieves a final turbidity of 132 NTUS (83.86% removal). The semi-passive treatment method with the sandy soil achieves a final turbidity of 31.43 NTUS (82.04% removal). There is only significant toxicity associated with the tests using the effluent from the passive treatment method with the soil with a fine-grained limerock component which only uses the cationic polymer.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004301, ucf:49482
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004301
-
-
Title
-
REMOVAL OF REFRACTORY TKN FROM AN EFFLUENT WASTEWATER USING SODIUM FERRATE.
-
Creator
-
Lettie, Lucia, Reinhart, Debra, University of Central Florida
-
Abstract / Description
-
This research addresses refractory forms of nitrogen that, even with advanced biological nitrification-denitrification systems are not removed completely from domestic wastewater. TKN (Total Kjeldahl Nitrogen), ammonia plus organic nitrogen, is one of the forms to measure the levels of nitrogen present in effluent wastewaters. Ferrate, a strong oxidant, was used for the treatment of these nitrogen forms with the objective of producing nitrogen compounds that can be removed by subsequent...
Show moreThis research addresses refractory forms of nitrogen that, even with advanced biological nitrification-denitrification systems are not removed completely from domestic wastewater. TKN (Total Kjeldahl Nitrogen), ammonia plus organic nitrogen, is one of the forms to measure the levels of nitrogen present in effluent wastewaters. Ferrate, a strong oxidant, was used for the treatment of these nitrogen forms with the objective of producing nitrogen compounds that can be removed by subsequent biological processes. Bench-scale experiments were performed on effluent samples taken prior to chlorination from an Orlando, FL wastewater treatment facility, using a biological nutrient removal process. The samples were treated with doses of ferrate ranging from 1 to 50 mg/L as FeO42 under unbuffered conditions. TKN removal as high as 70% and COD removal greater than 55% was observed. The TSS production after ferrate treatment was in a range of 12 to 200 mg/L for doses between 10 and 50 mg/L FeO4-2. After an optimum dose of ferrate was determined, three bench-scale reactors were operated under anoxic conditions for 10 to 12 days, two as duplicates containing the treated effluent and one as a control with untreated sample. Two different doses of ferrate were used as optimum dose for these experiments, 10 and 25 mg/L as FeO4-2. The purpose of these reactors was to determine the potential for biological removal of remaining nitrogen after ferrate oxidation of refractory nitrogen. Treated and raw samples were analyzed for Total Kjeldahl Nitrogen (TKN) (filtered and unfiltered), chemical oxygen demand (COD) (filtered and unfiltered), total suspended solids (TSS), nitrate (NO3-N), nitrite (NO2-N), and heterotrophic plate count (HPC). As a result, more than 70% of the soluble TKN was removed by chemical and biological oxidation for a sample treated with a dose of 25 mg/L FeO4-2, and less than 50% when treated with 10 mg/L FeO4-2. For the control samples run parallel to the ferrate treated samples, a maximum of 48% of soluble TKN and a minimum of 12% was removed. A three-log increase was observed in heterotrophic bacteria numbers for both doses during the operation of the reactors. Sodium ferrate was found to be an effective oxidant that can enhance the biodegradability of recalcitrant TKN present in municipal wastewaters. As mentioned before this research was develop using batch reactor units at bench-scale, therefore it is recommended to follow the investigation of the biodegradability of recalcitrant TKN of a ferrate treated sample under continuous flow conditions so that results can be extrapolated to a full-scale treatment facility.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001247, ucf:46936
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001247
-
-
Title
-
THE EFFECTS OF PH ON ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL (EBPR) WITH PROPIONIC ACID AS THE DOMINANT VOLATILE FATTY ACID (VFA).
-
Creator
-
malekjahani, seyed, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
pH control is a tool to improve some aspects of Enhanced Biological Phosphorus Removal (EBPR) process. Filipe et al (2001a, 2001b, and 2001c) found strong evidence that the stability of EBPR systems can be improved by increasing the pH of the anaerobic zone, thereby creating conditions where phosphorus-accumulating organisms (PAOs) are able to take up acetate faster than glycogen-accumulating organisms (GAOs). They explained this observation by comparing the growth rate of phosphorus...
Show morepH control is a tool to improve some aspects of Enhanced Biological Phosphorus Removal (EBPR) process. Filipe et al (2001a, 2001b, and 2001c) found strong evidence that the stability of EBPR systems can be improved by increasing the pH of the anaerobic zone, thereby creating conditions where phosphorus-accumulating organisms (PAOs) are able to take up acetate faster than glycogen-accumulating organisms (GAOs). They explained this observation by comparing the growth rate of phosphorus-accumulating organisms (PAOs) and glycogen-accumulating organisms (GAOs) and found that pH has little effect on PAOs growth rate but adversely affects GAOs growth rate when it increases (at pH values greater than 7.25, PAOs would take acetate faster than GAOs would). They used synthetic wastewater rich in acetic acid. In this study, we used real wastewater and the dominant volatile fatty acid available to microorganisms was propionic acid in continuous EBPR system. It was found that lower anaerobic zone pH (6.5 vs. 7.2) reduced the anaerobic P release both on an MLVSS specific basis and also on a non-specific (absolute value for the process) basis. In addition, the observed yield was significantly decreased. Aerobic P uptake was lower in the low-pH system (on a non-specific basis) due to the lower observed yield, and thus lower MLVSS concentration. Net P uptake was hard to interpret because of the effect of P release in the secondary clarifier of Train 2 (high pH). However, on a specific basis it was clear that net P uptake was either equal or better in the low-pH system regardless of how the secondary clarifier data was interpreted. Carbon transformations were not impacted in as consistent a fashion as anaerobic P release was. On a specific basis, PHA content remained unchanged although the PHV/PHB ratio was impacted with much lower PHV content in the low-pH system. Glycogen content and the amount of labile glycogen (delta glycogen) were higher in the low-pH system, in spite of the fact that MLVSS P content did not decrease. However, due to the impact of the low observed yield at low pH, absolute values resulted in higher PHA content for the process reactors as a whole, higher glycogen content, and unchanged labile glycogen. Low pH resulted in increased biomass P content, however the lower observed yield offset this on a process basis so that effluent P levels were nearly equal. So low pH improved P removal on a specific basis, but not on a process basis. Since it is unknown if the low observed yield is repeatable, and due to the impact of the secondary clarifier in the high pH system, it cannot be concluded that the effect of low pH on net P removal would be similar in other EBPR systems.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001433, ucf:47042
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001433
-
-
Title
-
EFFECTS OF REDUCED RAS AND VOLUME ON ANAEROBIC ZONE PERFORMANCE FOR A SEPTIC WASTEWATER BIOLOGICAL PHOSPHOROUS REMOVAL SYSTEM.
-
Creator
-
Magro, Daniel, Randall, Andrew, University of Central Florida
-
Abstract / Description
-
Enhanced Biological Phosphorous Removal (EBPR) performance was found to be adequate with reduced Return Activated Sludge (RAS) flows (50% of available RAS) to the anaerobic tank and smaller than typical anaerobic zone volume (1.08 hours hydraulic retention time or HRT). Three identical parallel biological nutrient removal (BNR) pilot plants were fed with strong, highly fermented (160 mg/L VFAs), domestic/industrial wastewater from a full scale wastewater treatment facility (WWTF). The pilot...
Show moreEnhanced Biological Phosphorous Removal (EBPR) performance was found to be adequate with reduced Return Activated Sludge (RAS) flows (50% of available RAS) to the anaerobic tank and smaller than typical anaerobic zone volume (1.08 hours hydraulic retention time or HRT). Three identical parallel biological nutrient removal (BNR) pilot plants were fed with strong, highly fermented (160 mg/L VFAs), domestic/industrial wastewater from a full scale wastewater treatment facility (WWTF). The pilot plants were operated at 100%, 50%, 40% and 25% RAS (percent of available RAS) flows to the anaerobic tank with the remaining RAS to the anoxic tank. In addition, varying anaerobic HRT (1.08 and 1.5 hours), and increased hydraulic loading (35% increase) was examined. The study was divided in four Phases, and the effect of these process variations on EBPR were studied by having one different variable between two identical systems. The most significant conclusions were that only bringing part of the RAS to the anaerobic zone did not decrease EBPR performance, instead changing the location of P release and uptake. Bringing less RAS to the anaerobic and more to the anoxic tank decreased anaerobic P release and increased anoxic P release (or decreased anoxic P uptake). Equally important is that with VFA rich influent wastewater, excessive anaerobic volume was shown to hurt overall P removal even when it resulted in increased anaerobic P release. Computer modeling with BioWin and UCTPHO was found to predict similar results to the pilot test results. Modeling was done with reduced RAS flows to the anaerobic zone (100%, 50%, and 25% RAS), increased anaerobic volume, and increased hydraulic loading. The most significant conclusions were that both models predicted EBPR did not deteriorate with less RAS to the anaerobic zone, in fact, improvements in EBPR were observed. Additional scenarios were also consistent with pilot test data in that increased anaerobic volume did not improve EBPR and increased hydraulic loading did not adversely affect EBPR.
Show less
-
Date Issued
-
2005
-
Identifier
-
CFE0000329, ucf:46285
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000329
-
-
Title
-
PILOT STUDY OF NUTRIENT LOADING IN A WET DETENTION LAKE.
-
Creator
-
Gurr, Eric, Nnadi, Fidelia, University of Central Florida
-
Abstract / Description
-
Florida is surrounded by water, and its many internal lakes and rivers have long been recognized for their excellent fishing and boating. This notoriety draws land developers to the lake shores to establish residential and commercial infrastructure. This land development brings with it flood plain alteration, water level stabilization, and increased nutrients which cause adverse impacts to our lakes. In response, the United States Environmental Protection Agency (EPA) passed the Federal Clean...
Show moreFlorida is surrounded by water, and its many internal lakes and rivers have long been recognized for their excellent fishing and boating. This notoriety draws land developers to the lake shores to establish residential and commercial infrastructure. This land development brings with it flood plain alteration, water level stabilization, and increased nutrients which cause adverse impacts to our lakes. In response, the United States Environmental Protection Agency (EPA) passed the Federal Clean Water Act (CWA) in 1972 which set the framework for the water quality standards for the entire United States. As a result of the CWA many point sources were eliminated, but in the process it became apparent that nonpoint source loads represented even more of a threat. To further study the physical and chemical characteristics of urban runoff the Nationwide Urban Runoff Program (NURP) was established in 1978. This research lead to a series of management options, named Best Management Practices (BMPs) which proposed various structural and non-structural methods to reduce nutrient loads. But the research and data collection on the effectiveness of these systems to remove nutrients is in its infancy. The main objective of this study was to generate accurate and effective water quality and water quantity data that future stormwater management decisions can be based upon. More specific, this study established automatic monitoring sites throughout the City of Kissimmee, Florida to determine the pollutant loadings into the tributaries of Lake Tohopekaliga. These monitoring sites are located such that inflows from outside the city limits can be isolated and external pollutant loads quantified. Also, additional internal monitoring sites were established to determine the pollutant loads of internal sections of the city. Data from these internal monitoring sites will also be used to determine the variable pollutant removal efficiencies and hydraulic fluctuations of natural, irregular riverine systems. The secondary objective of this study was to perform a pilot study using the discrete grab samples in tandem with the continuous hydraulic and hydrologic data from the monitoring stations. An existing lake within the project limits was chosen for the pilot study area. Monitoring stations are located at the influent and effluent sections of the lake which provided data on the hydraulic and hydrologic parameters. The pilot study determined the nutrient loads to and from the lake and checked for any seasonal variations in pollutant loading or removal efficiencies. For the purpose of this pilot study, only total nitrogen and total phosphorous were examined for two monitoring sites. The nutrient removal efficiency was performed using both the event mean concentration method and the summation of loads method to check for seasonal variation. There were no storm event concentrations available for used in this analysis, however, there were 25 discrete grab samples collected on a bi-monthly basis over a twelve month period. This data was used with corresponding five-minute rainfall and flow data from both the inflow and outflow points. The results of this study did not reveal any seasonal variation in the nutrient concentrations either flowing into or out from the lake. Although there were some relatively lower values in late spring, the concentration levels of total nitrogen did not seem to vary significantly from its mean value of 0.90 mg/l throughout the year. The concentration levels of total phosphorus did range from 0.02 mg/l to 0.48 mg/l, but not in relation to either season or flow volume fluctuations. The lake showed no net removals of total nitrogen and was actually found to be releasing total phosphorus to the downstream receiving waters. The findings of this study are limited due to the fact that the period of pilot study was only for twelve months and there were no rainfall events used in the analysis. Rainfall events are typically high sources of nutrient loads to a lake. The lower efficiencies were probably due to missing the actual higher nutrient load concentrations during the rainfall event. However, even considering the lack of event data, the nutrient removal efficiency for the pond was still low. This analysis did serve well as a basis for performing future analysis once additional data, including rainfall events, has been collected.
Show less
-
Date Issued
-
2007
-
Identifier
-
CFE0001912, ucf:47474
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001912
-
-
Title
-
Comparative nutrient removal with innovative green soprtion media for groundwater and stormwater co-treatment.
-
Creator
-
Wen, Dan, Chang, Ni-bin, Nam, Boo Hyun, Kibler, Kelly, Wanielista, Martin, Zheng, Qipeng, University of Central Florida
-
Abstract / Description
-
As indicated by the National Academy of Engineering, the understanding of nitrogen cycle has been deemed as one of 14 grand challenges in engineering of the 21st century. Due to rapid population growth and urbanization, the stormwater runoff increased in quantity as well as its nutrient concentrations, which may trigger serious environmental issues such as eutrophication in aquatic systems and ecosystem degradation. This study focuses on stormwater and groundwater quality control via...
Show moreAs indicated by the National Academy of Engineering, the understanding of nitrogen cycle has been deemed as one of 14 grand challenges in engineering of the 21st century. Due to rapid population growth and urbanization, the stormwater runoff increased in quantity as well as its nutrient concentrations, which may trigger serious environmental issues such as eutrophication in aquatic systems and ecosystem degradation. This study focuses on stormwater and groundwater quality control via Biosorption Activated Media (BAM) which can be applied to enhance the nutrient removal potential as an emerging Best Management Practices (BMPs). BAM was tested in this study with respect to two changing environmental factors including the presence of toxins such as copper and the addition of carbon sources that may affect the removal effectiveness. In addition, the impacts on microbial ecology in BAM within the nitrification and denitrification processes due to those changing environmental conditions were explored through the identification of microbial population dynamics under different environmental conditions. To further enhance the recovery and reuse of the adsorbed ammonia as possible soil amendment or even fertilizer, a new media called Iron Filing Green Environmental Media (IFGEM) was developed based on BAM, with the inclusion of iron filings as a key component for nitrate reduction. The functionality of IFGEM was analyzed through a serious column studies with respect to several key factors, including varying influent nutrient concentrations, pH values, and temperature. The results of the column studies demonstrate promising nutrient removal and recovery potential simultaneously under changing factors.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007770, ucf:52394
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007770
-
-
Title
-
PREDICTIVE MODELING OF SULFIDE REMOVAL IN TRAY AERATORS.
-
Creator
-
Faborode, Jumoke, Reddi, Lakshmi, University of Central Florida
-
Abstract / Description
-
Hydrogen sulfide is commonly found in many Florida potable groundwater supplies. Removing sulfur species, particularly hydrogen sulfide is important because if left untreated, sulfide can impact finished water quality, corrosivity, create undesirable taste and odor, and oxidize to form visible turbidity and color. This document presents the results of a study designed to investigate the removal efficiencies of a variety of tray aerators in Central Florida in order to develop a predictive...
Show moreHydrogen sulfide is commonly found in many Florida potable groundwater supplies. Removing sulfur species, particularly hydrogen sulfide is important because if left untreated, sulfide can impact finished water quality, corrosivity, create undesirable taste and odor, and oxidize to form visible turbidity and color. This document presents the results of a study designed to investigate the removal efficiencies of a variety of tray aerators in Central Florida in order to develop a predictive mathematical model that could be used to determine tray effectiveness for sulfide removal. A literature review was performed that indicated there was limited information regarding the removal of hydrogen sulfide using conventional tray aerators, and no information regarding the removal of total sulfide from tray aerators. There was significantly more information available in the literature regarding the usefulness of sulfide removal technologies from water supplies. Consequently, the lack of literature regarding sulfide removal using tray aerators suggested that there was a need for additional research focused on sulfide removal from water flowing thru tray aerators. Several water purveyors that relied on tray aerators as a part of their water treatment operations were contacted and requested to participate in the study; three water purveyors agreed to allow the University of Central Florida (UCF) to enter their secured sites to collect samples and conduct this study. The three facilities included the UCFÃÂ's water treatment plant located in Orlando and situated in eastern Orange County, the City of Lake HamiltonÃÂ's water treatment plant located in west-central Polk County, and the Sarasota-Verna water treatment plant located in western Sarasota County. An experimental plan was developed and field sampling protocols were implemented to evaluate sulfide removal in commonly used tray aerators at the three drinking water treatment facilities. Total sulfide concentrations passing through the trays were determined in the field at each site using a standard iodometric analytical technique. In addition, other water quality parameters collected included dissolved oxygen, pH, temperature, conductivity, turbidity, alkalinity, hardness, total dissolved solids and total suspended solids; these samples were collected and analyzed either in the field or at the UCF laboratory. A first-order empirical model was developed that predicted sulfide removal in tray aerators. The modelÃÂ's constant was evaluated with respect to the waterÃÂ's proton concentration , the tray aeratorÃÂ's surface area, and hydraulic flow rate thru the trays. The selected model took the form of Cn=C0 (10-kn) where Cn is the sulfide remaining after aeration in mg/L, C0 is the sulfide entering the distribution tray in mg/L, n is the number of tray stages in the aerator, and k=(0.00248)(H^+ )^(-0.397) (Area)^0.584 (Flow)^(-1.17). From the empirical model, it was shown that sulfide removal was negatively impacted as the proton concentration (H+) decreased, and flow increased. Conversely, it was observed that increased sulfide removal occurred as the available tray aerator surface area increased. The combined parameters of proton concentration, flow rate, and area were statistically evaluated and used to develop an empirical constant that could be used in a first order model to predict sulfide removal in tray aerators. Using a site-specific derived experimental (empirical) constant, a water purveyor could use the developed model from this work to accurately predict sulfide removal in a tray aerator by simply measuring the total sulfide content in any raw groundwater supply and then providing the desired number of tray stages available for treatment.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003518, ucf:48980
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003518
-
-
Title
-
Optimization of Glycerol or Biodiesel Waste Prefermentation to Improve EBPR.
-
Creator
-
Ghasemi, Marzieh, Randall, Andrew, Duranceau, Steven, Lee, Woo Hyoung, Jimenez, Jose, University of Central Florida
-
Abstract / Description
-
The enhanced biological phosphorus removal (EBPR) process efficiency relies on different operational and process conditions especially the type of carbon source available in the wastewater. Acetic acid and propionic acid are the two major volatile fatty acids (VFAs) found in domestic wastewater which can drive biological phosphorus (P) removal to the desired level. However, often domestic wastewater does not have a sufficient amount of VFAs. Due to high acetate and propionate production-cost,...
Show moreThe enhanced biological phosphorus removal (EBPR) process efficiency relies on different operational and process conditions especially the type of carbon source available in the wastewater. Acetic acid and propionic acid are the two major volatile fatty acids (VFAs) found in domestic wastewater which can drive biological phosphorus (P) removal to the desired level. However, often domestic wastewater does not have a sufficient amount of VFAs. Due to high acetate and propionate production-cost, it is not economic to add acetate and propionate directly in full-scale wastewater treatment plants. This brought up the idea of using external carbon sources (e. g. molasses has been used successfully) in EBPR systems that can be converted to VFAs through a fermentation process. On the other hand, biodiesel fuels have been produced increasingly over the last decade. Crude glycerol is a biodiesel production major by-product that can be used as an external carbon source in wastewater treatment plant. Therefore, the main objective of this research is to optimize the glycerol/biodiesel waste fermentation process' operational conditions in pursuit of producing more favorable fermentation end-products (i. e. a mixture of acetic acid and propionic acid) by adding glycerol to a prefermenter versus direct addition to the anaerobic zone or fermentation with waste activated sludge. For this reason, different prefermenter parameters namely: mixing intensity, pH, temperature and solids retention time (SRT), were studied in a small scale fermentation media (serum bottles) and bench scale semi-continuous batch prefermenters. Experimental results revealed that glycerol/biodiesel waste fermentation resulted in a significant amount of VFAs production with propionic acid as the superior end-product followed by acetic acid and butyric acid. The VFA production was at its highest level when the initial pH was adjusted to 7 and 8.5. However, the optimum pH with respect to propionic acid production was 7. Increasing the temperature in serum bottles favored the total VFA production, specifically in the form of propionic acid. Regarding the mixing energy inconsistent results were obtained in the serum bottles compared to the bench scale prefermenters. The VFA production in mixed serum bottles at 200 rpm was higher than that of un-mixed ones. On the other hand, the unmixed or slowly mixed bench scale prefermenters showed higher VFA production than the mixed reactors. However, the serum bottles did not operate long enough to account for biomass acclimation and other long-term effects that the prefermenter experiments could account for. As a consequence one of the most important and consistently results was that VFA production was significantly enhanced by reducing mixing intensity from 100 rpm to 7 rpm and even ceasing mixing all together. This was true both for primary solids and glycerol. In addition propionate content was high under both high and low intensity, and adding glycerol also increased the fraction of primary solids that formed propionic acid instead of acetic acid. Increasing the SRT from 2 to 4 days increased the VFA production about 12% on average. In order to investigate the effect of glycerol on EBPR process efficiency two identical A2/O systems were monitored for 3 months. Experimental results suggested that glycerol addition could increase the P removal efficiency significantly. Adding glycerol to the prefermenter rather than the anaerobic zone resulted in a lower effluent soluble ortho phosphorus (SOP) (0.4 mg-P/L vs. 0.6 mg-P/L) but the difference was apparently statistically significant. Future experimentation should be done to determine if this effect is consistent, especially in carbon poor wastewaters. Also it would be desirable to conduct a longer pilot study or a full scale study to determine if this improvement in effluent SOP remains true over a range of temperature and changing influent conditions.
Show less
-
Date Issued
-
2015
-
Identifier
-
CFE0006310, ucf:51612
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006310
-
-
Title
-
Optimization of Block Layout and Evaluation of Collection Mat Materials for Polyacrylamide Treatment Channels.
-
Creator
-
McDougal, Alicia, Chopra, Manoj, Nam, Boo Hyun, Wang, Dingbao, University of Central Florida
-
Abstract / Description
-
Construction sites are frequently cited as major sources of pollution that degrade the quality of surface water. The highly erodible topsoil is transported off site by stormwater runoff causing negative effects downstream. Research has shown that the small particles, which are the most susceptible to erosive forces, have more pollutants associated with them than larger soil particles. Currently, in the state of Florida, it is not permissible to discharge water to a receiving water body if the...
Show moreConstruction sites are frequently cited as major sources of pollution that degrade the quality of surface water. The highly erodible topsoil is transported off site by stormwater runoff causing negative effects downstream. Research has shown that the small particles, which are the most susceptible to erosive forces, have more pollutants associated with them than larger soil particles. Currently, in the state of Florida, it is not permissible to discharge water to a receiving water body if the turbidity is more than 29 Nephelometric Turbidity Units (NTUs) above background or higher than background for an outstanding Florida water body. The removal of fine suspended sediment from water can be achieved by filtration, settling, and the use of chemical coagulants. Polyacrylamide (PAM), a coagulant, has been shown to be effective in removing fine suspended particles from water via coagulation and flocculation. The Stormwater Management Academy at the University of Central Florida has researched the use of PAM and collection mats in a treatment channel to meet state discharge requirements. In this study, turbid water using sediment from typical Florida soils was simulated and passed through a channel. The channel contained polymer blocks in a configuration previously determined to be the most effective. An important component of the treatment system is the floc collection. This research examined three types of collection mats, namely jute, coconut fiber and polypropylene mix to collect the flocs. This thesis presents the results of this investigation.The results for the sandy soil tests showed an average removal efficiency prior to the collection mat starting at 71% and decreasing to 44% at the end of the tests. The 20-foot coconut mat maintained an average removal efficiency of 90%. The turbidity due to silty-sandy soil was decreased with an average removal efficiency prior to the collection mat ranging from 50% to 65%. The average removal efficiency for the 20-foot coconut mat started at 85%and decreased to 60% during the tests. The turbidity due to crushed limestone showed an average removal efficiency prior to the collection mat ranging from 81% down to 69% over time. The average results from the 20-foot coconut mat ranged from 65% to 80%. Turbidity was tested on the samples under two conditions, a 30 second settling time and completely mixed. Statistical results show a significant decrease (?=0.05) in turbidity between the mixed and settled samples.Statistical analyses were performed on the collected data, which concluded that the capability of the mat to reduce turbidity can be repeated with a 95% confidence interval. The 20-foot length coconut mat had the highest turbidity removal efficiency for every soil type examined. Further statistical analysis showed that the achieved turbidity reduction was significantly different (?=0.05) for the various materials. It was observed that generally, each type of mat clogged during testing indicating that longer collection mats be used, possibly lining the entire channel. Recommendations from this study are to provide a settling area after the collection mats and line the entire length of the channel with the collection mat selected.
Show less
-
Date Issued
-
2014
-
Identifier
-
CFE0005210, ucf:50628
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0005210
-
-
Title
-
Biological Nutrient Removal (BNR) Process Optimization and Recovery of Embedded Energy Using Biodiesel By-product.
-
Creator
-
Salamah, Sultan, Randall, Andrew, Duranceau, Steven, Chopra, Manoj, University of Central Florida
-
Abstract / Description
-
Enhanced biological phosphorus removal (EBPR) as well as biological nitrogen removal require a carbon source to be carried out. Volatile fatty acid (VFAs) (mainly acetic and propionic acids) are the major driving force for EBPR. Many domestic wastewaters have an insufficient amount of VFAs. However, carbon sources such as acetic and propionic acids can be produced using primary solids fermentation process. Due to the cost of VFA production, an external carbon source can be added to the...
Show moreEnhanced biological phosphorus removal (EBPR) as well as biological nitrogen removal require a carbon source to be carried out. Volatile fatty acid (VFAs) (mainly acetic and propionic acids) are the major driving force for EBPR. Many domestic wastewaters have an insufficient amount of VFAs. However, carbon sources such as acetic and propionic acids can be produced using primary solids fermentation process. Due to the cost of VFA production, an external carbon source can be added to the biological nutrient removal (BNR) system that can be fermented to provide the desired VFAs. Glycerol (biodiesel by-product) offers a solution to reduce carbon addition cost if can be fermented to acetic and propionic acid or can be used directly as an external carbon substrate for EBPR and denitrification. Using glycerol in wastewater treatment can also offset the biodiesel plant disposal cost and reduce the BNR chemical cost. The main objective of this study was to optimize the prefermentation process and optimize the BNR system using glycerol as an external carbon source. In this work, Optimization of the prefermentation process using glycerol, mixing, and hydrogen gas addition was evaluated. EBPR performance within an A2O-BNR system was evaluated using either a direct glycerol method to the anaerobic zone or by co-fermentation with primary solids. Also, optimization of the nitrogen removal (specifically denitrification) efficiency of a 5-stage BardenphoTM BNR system using either a direct glycerol method to the second anoxic zone or by co-fermentation with primary solids was evaluated. It was found in this study that glycerol was an efficient external carbon substrate for EBPR as well as biological nitrogen removal. The prefermentation experiment showed that glycerol co-fermentation with primary solids produced significantly higher (p(<)0.05) VFAs than primary solids fermentation alone, even more than the possible value from the added glycerol (427 mg-COD/L). The increased VFAs imply that the glycerol addition stimulated additional fermentation of primary solids. Lowering the prefermenter mixing energy (50 to 7 rpm) resulted in a significant increase in VFAs production (80%). Also, purging the headspace of the prefermenter with hydrogen gas did not lead to more VFAs, but significantly (p(<)0.05) increased the propionic acid to acetic acid ratio by 41%. In the A2O-BNR pilot plant experiment, it was found that glycerol is a suitable renewable external substrate to drive enhanced EBPR as well as denitrification. The results from both locations of glycerol addition (direct vs. fermented) were beneficial to the BNR system. Both systems had similar effluent quality and achieved total nitrogen (TN) and total phosphorus (TP) removals up to 86% and 92% respectively. The 5-stage BardenphoTM BNR experiment investigated the location of glycerol addition (direct vs. fermented) on the performance of denitrification in the second anoxic zone and the overall performance. The results from both systems were that glycerol was beneficial to the BNR system and had virtually similar effluent quality. Both systems achieve complete denitrification and excellent removal of TN and TP up to 95% and 89% respectively. Also, the pilot that received fermented glycerol had significantly higher VFAs loading and lower observed yield. The side-stream prefermenter effluent flowing to the second anoxic reactor did not cause high effluent ammonia (NH3) concentration. In summary, the location at which glycerol was added did not affect effluent quality for nitrogen and phosphorus. However, glycerol addition and mixing energy did impact prefermenter performance and effluent quality.
Show less
-
Date Issued
-
2017
-
Identifier
-
CFE0006788, ucf:51826
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006788
-
-
Title
-
IMAGE-BASED MATERIAL EDITING.
-
Creator
-
Khan, Erum, Reinhard, Erik, University of Central Florida
-
Abstract / Description
-
Photo editing software allows digital images to be blurred, warped or re-colored at the touch of a button. However, it is not currently possible to change the material appearance of an object except by painstakingly painting over the appropriate pixels. Here we present a set of methods for automatically replacing one material with another, completely different material, starting with only a single high dynamic range image, and an alpha matte specifying the object. Our approach exploits the...
Show morePhoto editing software allows digital images to be blurred, warped or re-colored at the touch of a button. However, it is not currently possible to change the material appearance of an object except by painstakingly painting over the appropriate pixels. Here we present a set of methods for automatically replacing one material with another, completely different material, starting with only a single high dynamic range image, and an alpha matte specifying the object. Our approach exploits the fact that human vision is surprisingly tolerant of certain (sometimes enormous) physical inaccuracies. Thus, it may be possible to produce a visually compelling illusion of material transformations, without fully reconstructing the lighting or geometry. We employ a range of algorithms depending on the target material. First, an approximate depth map is derived from the image intensities using bilateral filters. The resulting surface normals are then used to map data onto the surface of the object to specify its material appearance. To create transparent or translucent materials, the mapped data are derived from the object's background. To create textured materials, the mapped data are a texture map. The surface normals can also be used to apply arbitrary bidirectional reflectance distribution functions to the surface, allowing us to simulate a wide range of materials. To facilitate the process of material editing, we generate the HDR image with a novel algorithm, that is robust against noise in individual exposures. This ensures that any noise, which would possibly have affected the shape recovery of the objects adversely, will be removed. We also present an algorithm to automatically generate alpha mattes. This algorithm requires as input two images--one where the object is in focus, and one where the background is in focus--and then automatically produces an approximate matte, indicating which pixels belong to the object. The result is then improved by a second algorithm to generate an accurate alpha matte, which can be given as input to our material editing techniques.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001462, ucf:47065
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001462
-
-
Title
-
SLURRY CHEMISTRY EFFECTS ON COPPER CHEMICAL MECHANICAL PLANARIZATION.
-
Creator
-
Luo, Ying, Desai, Vimal, University of Central Florida
-
Abstract / Description
-
ABSTRACTChemical-mechanical Planarization (CMP) has emerged as one of the fastest-growing processes in the semiconductor manufacturing industry, and it is expected to show equally explosive growth in the future (Braun, 2001). The development of CMP has been fueled by the introduction of copper interconnects in microelectronic devices. Other novel applications of CMP include the fabrications of microelectromechanical systems (MEMS), advanced displays, three dimensional systems, and so on ...
Show moreABSTRACTChemical-mechanical Planarization (CMP) has emerged as one of the fastest-growing processes in the semiconductor manufacturing industry, and it is expected to show equally explosive growth in the future (Braun, 2001). The development of CMP has been fueled by the introduction of copper interconnects in microelectronic devices. Other novel applications of CMP include the fabrications of microelectromechanical systems (MEMS), advanced displays, three dimensional systems, and so on (Evans, 2002). CMP is expected to play a key role in the next-generation micro- and nanofabrication technologies (Singh, et al., 2002).Despite the rapid increase in CMP applications, the fundamental understanding of the CMP process has been lacking, particularly the understanding of the wafer-slurry-pad interactions that occur during the CMP process. Novel applications of CMP are expected to expand to materials that are complex chemically and fragile mechanically. Thus, fundamental understanding and improvement of slurry design for CMP is the key to the development of sophisticated next-generation CMP processes.Slurry performance for CMP can be determined by several output parameters including removal rate, global planarity, surface topography, and surface defectivity. To achieve global planarity, it is essential to form a very thin passivating surface layer (<2 nm) that is subsequently removed by the mechanical component of the slurry (Kaufman et al., 1991) or by combined chemo-mechanical effects (Tamboli, 2000). Chemical additives like hydrogen peroxide (H2O2), potassium ferricyanide, and ferric chloride are added to slurries as oxidizers in order to form a desirable surface layer. Other chemical additives such as inhibitors (e.g. benzotriazole) and complexing agents (e.g. ammonia) are added to the copper slurry in order to modify the oxide layer. That the removal rate of the thin surface layer is greater at the highest regions of the wafer surface than at the lowest regions leads to surface planarity.In this study, various complexing agents and inhibitors are combined to form slurry chemistry for copper CMP processing in H2O2 based slurries at pH values ranging from 2 to 10. Two complexing agents (glycine and Ethylenediamine) and one inhibitor (3-amino-1, 2, 4-triazole) were selected as slurry constituents for detailed chemical synergistic effect study because they showed good materials removal and surface planarity performances.To understand the fundamental mechanisms involved in copper CMP process with the afore-mentioned slurry chemical formations, various techniques, such as electrochemical testing techniques (including potentiodynamic polarization and electrochemical impedance spectroscopy), x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM), were applied. As a result, guidelines for optimized slurry chemical formulation were arrived at and the possible mechanisms of surface-chemical-abrasive interactions were determined. From applications point of view, this study serves as a guide for further investigations in pursuing highly effective slurry formulations for copper/low-k interconnect applications.
Show less
-
Date Issued
-
2004
-
Identifier
-
CFE0000120, ucf:46195
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0000120
-
-
Title
-
The Conditionality of Vulnerability: Three Analyses of Risk and Opportunity in Civil Military Relations.
-
Creator
-
Schiel, Rebecca, Powell, Jonathan, Kinsey, Barbara, Dolan, Thomas, Thyne, Clayton, University of Central Florida
-
Abstract / Description
-
Prior research has not established a clear relationship between democracy and insulation from coups d'(&)#233;tat. I contend that the lack of attention paid to the conditional influences of democracy have resulted in these mixed findings. I posit that insulation from coups occurs at higher levels of economic development and judicial institutional strength in democracies. Further, the vulnerability at low levels of both economic development and judicial institutional strength is significantly...
Show morePrior research has not established a clear relationship between democracy and insulation from coups d'(&)#233;tat. I contend that the lack of attention paid to the conditional influences of democracy have resulted in these mixed findings. I posit that insulation from coups occurs at higher levels of economic development and judicial institutional strength in democracies. Further, the vulnerability at low levels of both economic development and judicial institutional strength is significantly greater in democracies than in autocracies. Empirical assessments of 165 states for the years 1950-2012 offer strong support for both arguments. Results from these studies first help to reconcile earlier research on coup risk in democracies. Second, I point to the conditionality of democratic coup risk by highlighting the roles of economic development and political institutions. Third, I underscore the vast differences in institutional arrangements within democracies, suggesting a more nuanced approach is needed in the study of democratic political institutions. In line with this research, I examine the propensity for democratization in the aftermath of irregular leader removal. Examining the actors and tactics associated with different removal types, I focus on the benefits and challenges posed to democratization in the aftermath of removals. In an empirical assessment of authoritarian states from 1950-2012, I find that only removals resulting from coups, in conjunction with economic development, have significantly higher rates of democratization compared with the null. The results of this study are twofold, finding that not all forms of irregular leadership removal result in similar rates of post-removal democratization and that coups have driven prior results finding an association between irregular leader removal, economic development, and democratization.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007365, ucf:52087
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007365
-
-
Title
-
COMPARISON OF TRADITIONAL STANDARD DRAINFIELD WITH INNOVATIVE B&G TREATMENT BED FOR NUTRIENT REMOVAL FROM SEPTIC TANK WASTEWATER.
-
Creator
-
Hossain, Fahim, Chang, Ni-Bin, University of Central Florida
-
Abstract / Description
-
Nowadays people are more alert about conservation of water and water scarcity. The amount of usable water is decreasing due to unavailability of pure water for day to day use. Both surface and groundwater is contaminated by untreated wastewater discharged from improper onsite wastewater treatment system, nutrient laden agricultural runoff and increasing use of fertilizer in fields. This elevated nutrient level is increasing the maintenance and operation cost of water treatment plant. So it is...
Show moreNowadays people are more alert about conservation of water and water scarcity. The amount of usable water is decreasing due to unavailability of pure water for day to day use. Both surface and groundwater is contaminated by untreated wastewater discharged from improper onsite wastewater treatment system, nutrient laden agricultural runoff and increasing use of fertilizer in fields. This elevated nutrient level is increasing the maintenance and operation cost of water treatment plant. So it is an important task to remove those nutrients from wastewater and other water bodies by applying environmental friendly process. In the USA, about 25% homes are still depending on on-site wastewater treatment (OSWT) due to unavailability of centralized treatment process. In Florida, OSWT is managed by the Florida Department of Health (FDOH). By realizing the importance of water conservation, USEPA already determined the maximum contaminant level (MCL) for nitrate and nitrite in water bodies. Many researches are conducted to evaluate the performance of EPA recommended treatment process (i.e. traditional standard drain field) for OSWT. The UCF research group also performed an experiment to understand the efficiency of traditional standard drain field. At the same time the research group developed an innovative wastewater treatment process named B&G treatment bed as a comparison with traditional standard drain field. This paper mainly focuses on performance of these two treatment processes. The B&G is a novel treatment process by its functionality for nutrient removal. The process generally used a media mixture developed by the research group of UCF. This mixture will act as organic carbon source to support denitrification process while nitrification process does not demand such carbon source. Evan it is observed that this mixture can remove nutrient by physical-chemical process. The recirculation sand filter (RSF) of traditional drain field is also filled by another mixture of media. Both media mixtures are developed by batch experiment in UCF laboratory. The performance of the B&G is compared with the traditional treatment process practiced in USA. These media mixtures can be good supporting media for microorganismsÃÂ' growth and development. All the major nitrogen and phosphorus species removal is observed by collecting sample in a weekly fashion. The pathogens removal efficiency is also observed. The sample is analyzed by a certified laboratory (i.e. Environmental Research and Design, ERD) in Orlando, Florida to maintain the best quality of this research. The presence of microorganisms is identified by using PCR. The B&G drainfield is very effective for removing both nitrogen and phosphorus species from wastewater. It is also very efficient to remove pathogens too. Standard drainfield is very effective for pathogen removal but it cannot remove nutrients effectively. Nitrate removal in B&G drainfield is well compared to standard drainfield.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003271, ucf:52842
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003271
-
-
Title
-
EXPERIMENTAL ANALYSIS ON THE EFFECTS OF SUPERFICIAL LIQUID AND GAS VELOCITIES IN THE REMOVAL OF HYDROGEN SULFIDE FROM A BRINE/OIL MIXTURE.
-
Creator
-
Lee, Joshua, Kumar, Ranganathan, University of Central Florida
-
Abstract / Description
-
Hydrogen Sulfide (H2S) is a harmful gas produced during petroleum extraction that leads to corrosion of drilling tools and pipelines. However, a H2S-scavenging liquid compound, when added to pipelines, interacts with liquids that absorbed H2S to create a non-corrosive bi-product. The interaction is associated with the mixing of gases and liquids. This thesis is a study on the effect of superficial gas and liquid velocities on the scavengerÃÂÃÂ...
Show moreHydrogen Sulfide (H2S) is a harmful gas produced during petroleum extraction that leads to corrosion of drilling tools and pipelines. However, a H2S-scavenging liquid compound, when added to pipelines, interacts with liquids that absorbed H2S to create a non-corrosive bi-product. The interaction is associated with the mixing of gases and liquids. This thesis is a study on the effect of superficial gas and liquid velocities on the scavengerÃÂÃÂÃÂÃÂ's efficiency. This study employs two experimental setups designed to simulate the mixing of gases and liquids within pipelines. A high pressure closed loop was designed and fabricated to determine the influence of gas, liquid velocities and liquid volume on the scavengerÃÂÃÂÃÂÃÂ's efficiency. All experiments were conducted in this high pressure loop with a thousand feet of coiled tubing to simulate the horizontal section of the pipeline that runs along the ocean floor from the reservoir. This provided practical understanding to petroleum companies to make a better forecast of how the scavenger used in eliminating the H2S, is affected in the process of transporting the liquids and gases from the reservoir to the surface. For an adequate analysis, experiments on four liquid and four gas velocities ranging from 0.2m/s to 0.5m/s and 0.4m/s to 1.1m/s respectively were conducted. Results in this study indicated that increases in superficial gas velocity at low superficial liquid velocity decreases the scavenger efficiency while the opposite is seen at high superficial liquid velocity. In addition, the H2S mass absorption was not a function of liquid volume as would be seen in static reservoirs but more of a function of superficial liquid and gas velocities. With the scavenger interacting with the liquid absorbed H2S, it was expected that the efficiency would increase with the increase in volume but in this study this was not the case. The second experiment is a flow visualization loop which was designed to understand the flow regimes at high pressures. This was done by constructing four 25ft section hoses together with four foot long breaks for visualization. This provided a more fundamental study of the fluidÃÂÃÂÃÂÃÂ's behavior inside the pipelines allowing for the creation of appropriate flow regime maps in air-water flow. A hundred experiments for two different pressures were conducted at the 25ft location. At high pressures, the flow regime map appeared to shift the transition zones.
Show less
-
Date Issued
-
2010
-
Identifier
-
CFE0003310, ucf:48490
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0003310
-
-
Title
-
The effect of glycerol on readily biodegradable chemical oxygen demand (RBCOD) in a wastewater stream.
-
Creator
-
Rawut, Rojina, Sadmani, A H M Anwar, Lee, Woo Hyoung, Duranceau, Steven, University of Central Florida
-
Abstract / Description
-
This study evaluated the short-term effects of glycerol addition on readily biodegradable (RB) chemical oxygen demand (COD) in a carbon limited wastewater influent. The presence of an RB fraction provides with a suitable substrate for microorganisms to produce volatile fatty acids (VFA). The oxygen utilization rate (OUR) has been used to evaluate the oxygen consumption for RB substrate in wastewater. Wastewater with low organic content contains limited RB substrate, and thus, additional...
Show moreThis study evaluated the short-term effects of glycerol addition on readily biodegradable (RB) chemical oxygen demand (COD) in a carbon limited wastewater influent. The presence of an RB fraction provides with a suitable substrate for microorganisms to produce volatile fatty acids (VFA). The oxygen utilization rate (OUR) has been used to evaluate the oxygen consumption for RB substrate in wastewater. Wastewater with low organic content contains limited RB substrate, and thus, additional carbon source is required to improve biological treatment capability. Acetate, propionate, methanol, and glycerol are the commonly available carbon sources for biological treatment process. However, the cost of acetate and propionate are relatively high, and it is not economical to use these carbon sources in the wastewater plant. The use of methanol as a carbon source inherently poses safety issues in field applications due to its toxic and flammable properties. On the other hand, crude glycerol is the byproduct of biodiesel, which is an excellent carbon source alternative. However, crude glycerol contains impurities and requires a certain degree of purification to enhance the performance. The samples for the study were collected from the Iron Bridge Wastewater Reclamation Facility (Oviedo, FL) designed for treating municipal wastewater. The total COD (TCOD) of the sample influent was in the range of 237 to 408 mg COD/L, and RBCOD value was between 38 and 80.5 mg COD/L, containing up to 10 mg COD/L of VFA. This study also demonstrates the relationship between the glycerol concentration and OURs during the diauxic growth phase from the addition of glycerol. The growth was due to the existence of RB substrate and availability of glycerol for the microorganisms. TCOD increased from 284 to 378 mg COD/L and from 284 mg COD/L to 323 mg COD/L by spiking approximately 30 and 15 mL of glycerol stock solution (6.67 g/L), respectively. RBCOD increased from 45 to 89 mg COD/L and 55 mg COD/ L by spiking 30 mL and 15 ml glycerol stock solution, respectively. The initial influent heterotrophic active biomass (ZBH) increased from 5.4 to 15.8 mg VSS/L (8 to 23.4 mg COD/L) due to the addition of glycerol, indicating that the glycerol may be an adequate carbon source. The COD of wastewater with limited VFA (e.g., 10 mg COD/L) increased up to 2,502 mg COD/L where propionic acid (2,468 mg COD/L) exists as the primary end product with a small quantity of acetic acid (34 mg COD/L). Propionic acid was the main VFA component fermented from the glycerol addition. Glycerol addition led to increased RBCOD accompanied by high VFA production. This research investigated the short-term effect of glycerol addition on existing RBCOD in wastewater. It is recommended to explore the effect of increased RBCOD by the addition of glycerol to the effluent N and P for future study.
Show less
-
Date Issued
-
2016
-
Identifier
-
CFE0006543, ucf:51324
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0006543
Pages