Current Search: stimulated scattering (x)
View All Items
- Title
- APPLICATIONS OF LINEAR AND NONLINEAR OPTICAL EFFECTS IN LIQUID CRYSTALS.
- Creator
-
Sarkissian, Hakob, Zeldovich, Boris, University of Central Florida
- Abstract / Description
-
Liquid crystals have been a major subject of research for the past decades. Aside from the variety of structures they can form, they exhibit a vast range of optical phenomena. Many of these phenomena found applications in technology and became an essential part of it. In this dissertation thesis we continue the line to propose a number of new applications of optical effects in liquid crystals and develop their theoretical framework. One such application is the possibility of beam combining...
Show moreLiquid crystals have been a major subject of research for the past decades. Aside from the variety of structures they can form, they exhibit a vast range of optical phenomena. Many of these phenomena found applications in technology and became an essential part of it. In this dissertation thesis we continue the line to propose a number of new applications of optical effects in liquid crystals and develop their theoretical framework. One such application is the possibility of beam combining using Orientational Stimulated Scattering in a nematic liquid crystal cell. Our numerical study of the OSS process shows that normally this possibility does not exist. However, we found that if a number of special conditions is satisfied efficient beam combining with OSS can be done. These conditions require a combination of special geometric arrangement of incident beams, their profiles, nematic material, and more. When these conditions are fulfilled, power of the beamlets can be coherently combined into a single beam, with high conversion efficiency while the shape and wave-front of the output beam are still of good quality. We also studied the dynamics of the OSS process itself and observed (in a numerical model) a number of notorious instabilities caused by effects of back-conversion iv process. Additionally, there was found a numerical solitary-wave solution associated with this back-conversion process. As a liquid crystal display application, we consider a nematic liquid crystal layer with the anisotropy axis modulated at a fixed rate in the transverse direction with respect to light propagation direction. If the layer locally constitutes a half-wave plate, then the thinscreen approximation predicts 100% -efficient diffraction of normal incident wave. If this diffracted light is blocked by an aperture only transmitting the zero-th order, the cell is in dark state. If now the periodic structure is washed out by applying voltage across the cell and light passes through the cell undiffracted, the light will pass through the aperture as well and the cell will be in its bright state. Such properties of this periodically aligned nematic layer suggest it as a candidate element in projection display cells. We studied the possibility to implement such layer through anchoring at both surfaces of the cell. It was found that each cell has a thickness threshold for which the periodic structure can exist. The anchored periodic structure cannot exist if thickness of the cell exceeds this threshold. For the case when the periodic structure exists, we found the structure distortion in comparison with the preferable ideal sinusoidal profile. To complete description of the electromechanical properties of the periodic cell, we studied its behavior at Freedericksz transition. Optical performance was successfully described with the coupled-mode theory. While influence of director distortion is shown to be negligibly small, the walk-off effects appear to be larger. In summary, there are good prospects for use of this periodically v aligned cell as a pixel in projection displays but experimental study and optimization need to be performed. In the next part we discuss another modulated liquid crystal structure in which the director periodically swings in the direction of light propagation. The main characteristic of such structure is the presence of bandgap. Cholesteric liquid crystals are known to possess bandgap for one of two circular polarizations of light. However, unlike the cholesterics the bandgap of the proposed structure is independent of polarization of normally incident light. This means that no preparation of light is needed in order for the structure to work in, for example, liquid crystal displays. The polarization universality comes at the cost of bandgap size, whose maximum possible value ∆ωPTN compared to that of cholesterics ∆ωCh is approximately twice smaller: ∆ωPTN ≈ 0.58∆ωCh if modulation profile is sinusoidal, and ∆ωPTN ≈ 0.64∆ωCh if it is rectangular. This structure has not yet been experimentally demonstrated, and we discuss possible ways to make it.
Show less - Date Issued
- 2006
- Identifier
- CFE0001164, ucf:46856
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001164
- Title
- Third-order optical nonlinearities for integrated microwave photonics applications.
- Creator
-
Malinowski, Marcin, Fathpour, Sasan, Delfyett, Peter, Christodoulides, Demetrios, Lyakh, Arkadiy, University of Central Florida
- Abstract / Description
-
The field of integrated photonics aims at compressing large and environmentally-sensitive opticalsystems to micron-sized circuits that can be mass-produced through existing semiconductor fabri-cation facilities. The integration of optical components on single chips is pivotal to the realizationof miniature systems with high degree of complexity. Such novel photonic chips find abundant ap-plications in optical communication, spectroscopy and signal processing. This work concentrateson...
Show moreThe field of integrated photonics aims at compressing large and environmentally-sensitive opticalsystems to micron-sized circuits that can be mass-produced through existing semiconductor fabri-cation facilities. The integration of optical components on single chips is pivotal to the realizationof miniature systems with high degree of complexity. Such novel photonic chips find abundant ap-plications in optical communication, spectroscopy and signal processing. This work concentrateson harnessing nonlinear phenomena to this avail.The first part of this dissertation discusses, both from component and system level, the developmentof a frequency comb source with a semiconductor mode-locked laser at its heart. New nonlinear de-vices for supercontinuum and second-harmonic generations are developed and their performance isassessed inside the system. Theoretical analysis of a hybrid approach with synchronously-pumpedKerr cavity is also provided. The second part of the dissertation investigates stimulated Brillouinscattering (SBS) in integrated photonics. A fully-tensorial open-source numerical tool is developedto study SBS in optical waveguides composed of crystalline materials, particularly silicon. SBS isdemonstrated in an all-silicon optical platform.
Show less - Date Issued
- 2019
- Identifier
- CFE0007674, ucf:52497
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007674
- Title
- Properties of High Energy Laser Light Transmission through Large Core Optical Cables.
- Creator
-
Kennedy, Christopher, Schulzgen, Axel, Bass, Michael, Soileau, Marion, Gordon, Ali, University of Central Florida
- Abstract / Description
-
Laser induced damage is of interest in studying the transmission of large amounts of optical energy through step-index, large core multimode fibers. Optical fibers often have to be routed around objects when laser light is being transmitted between two locations which require the fiber to bend into a curve. Depending on how tight the bend is, this can result in transmission losses or even catastrophic damage when the energy density of the laser pulse exceeds the damage threshold of silica...
Show moreLaser induced damage is of interest in studying the transmission of large amounts of optical energy through step-index, large core multimode fibers. Optical fibers often have to be routed around objects when laser light is being transmitted between two locations which require the fiber to bend into a curve. Depending on how tight the bend is, this can result in transmission losses or even catastrophic damage when the energy density of the laser pulse exceeds the damage threshold of silica glass. Waveguide theory predicts that light traveling through a bend will form whispering-gallery modes that propagate through total internal reflection bounces along the inside of the outer edge of the bend. This is critical since in these locations the energy density of the light will increase significantly, raising the potential of laser damage, nonlinear effects, and transmission losses. This loss is especially problematic when two 90(&)deg; bends going in opposite directions are in close proximity to each other, forming an 'S-bend'. Light that is grouped along the outer edge going through the first bend will enter the second bend at a sharper angle which causes much high transmission losses and raises the possibility of failure.Models using R-Soft BeamProp and Zemax were developed to study transmission losses, investigate light interactions at critical areas, and predict under which conditions laser damage would occur. BeamProp presents a clearer view of the modal distribution of light within the core of the fiber and is used to analyze how a plane wave with a Gaussian intensity distribution excites the fiber modes. Zemax provides a tool to perform non-sequential ray tracing through the fiber cable and stray light analysis within the core and once the light exits the fiber. Intensity distributions of the cross sectional area of the fiber shows the whispering gallery modes forming as the light propagates around bends and disburses as it propagates afterwards. It was discovered using R-Soft that if the separation distance between bends in an S-bend is approximately 3 mm there exists a condition where maximum transmission occurs. For 365 (&)#181;m diameter core fiber it was calculated that the difference in output power could be as high as 150%. This was initially completely unexpected; however ray tracing using Zemax was able to verify that this distance allows the light to transition so that it enters the 2nd bend at the optimal angle to enter the whispering gallery mode. Experiments were performed that validated the models' predictions and images were captured clearly showing the spatial distribution shift of the light within the core of the fiber.Experiments were performed to verify light grouping together to form whispering gallery modes as predicted by Zemax. Microscope images were taken as a function of distance from various bends to observe the periodic nature in which the laser light fills up the fiber. Additionally, a configuration was setup to examine stimulated Brillioun scattering and determine the onset of laser damage in the fiber. Fibers were tested as a function of bend radius and number of shots and recommendations for future systems were made. Lastly, mechanical failure tests were performed to determine the relationship between stress placed on the fiber through bending and fiber lifetime in a static environment. This allowed a minimum safe bend radius to be calculated for a 30 year lifetime that agreed with previous calculated values.
Show less - Date Issued
- 2013
- Identifier
- CFE0004871, ucf:49668
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004871