Current Search: stochastic demand (x)
View All Items
- Title
- MEASURING THE EFFECT OF ERRATIC DEMANDON SIMULATED MULTI-CHANNEL MANUFACTURINGSYSTEM PERFORMANCE.
- Creator
-
Kohan, Nancy, Kulonda, Dennis, University of Central Florida
- Abstract / Description
-
ABSTRACT To handle uncertainties and variabilities in production demands, many manufacturing companies have adopted different strategies, such as varying quoted lead time, rejecting orders, increasing stock or inventory levels, and implementing volume flexibility. Make-to-stock (MTS) systems are designed to offer zero lead time by providing an inventory buffer for the organizations, but they are costly and involve risks such as obsolescence and wasted expenditures. The main concern of make-to...
Show moreABSTRACT To handle uncertainties and variabilities in production demands, many manufacturing companies have adopted different strategies, such as varying quoted lead time, rejecting orders, increasing stock or inventory levels, and implementing volume flexibility. Make-to-stock (MTS) systems are designed to offer zero lead time by providing an inventory buffer for the organizations, but they are costly and involve risks such as obsolescence and wasted expenditures. The main concern of make-to-order (MTO) systems is eliminating inventories and reducing the non-value-added processes and wastes; however, these systems are based on the assumption that the manufacturing environments and customers' demand are deterministic. Research shows that in MTO systems variability and uncertainty in the demand levels causes instability in the production flow, resulting in congestion in the production flow, long lead times, and low throughput. Neither strategy is wholly satisfactory. A new alternative approach, multi-channel manufacturing (MCM) systems are designed to manage uncertainties and variabilities in demands by first focusing on customers' response time. The products are divided into different product families, each with its own manufacturing stream or sub-factory. MCM also allocates the production capacity needed in each sub-factory to produce each product family. In this research, the performance of an MCM system is studied by implementing MCM in a real case scenario from textile industry modeled via discrete event simulation. MTS and MTO systems are implemented for the same case scenario and the results are studied and compared. The variables of interest for this research are the throughput of products, the level of on-time deliveries, and the inventory level. The results conducted from the simulation experiments favor the simulated MCM system for all mentioned criteria. Further research activities, such as applying MCM to different manufacturing contexts, is highly recommended.
Show less - Date Issued
- 2004
- Identifier
- CFE0000240, ucf:46275
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000240
- Title
- A Comparative Evaluation of FDSA,GA, and SA Non-Linear Programming Algorithms and Development of System-Optimal Dynamic Congestion Pricing Methodology on I-95 Express.
- Creator
-
Graham, Don, Radwan, Ahmed, Abdel-Aty, Mohamed, Al-Deek, Haitham, Uddin, Nizam, University of Central Florida
- Abstract / Description
-
As urban population across the globe increases, the demand for adequatetransportation grows. Several strategies have been suggested as a solution to the congestion which results from this high demand outpacing the existing supply of transportation facilities.High (-)Occupancy Toll (HOT) lanes have become increasingly more popular as a feature on today's highway system. The I-95 Express HOT lane in Miami Florida, which is currently being expanded from a single Phase (Phase I) into two Phases,...
Show moreAs urban population across the globe increases, the demand for adequatetransportation grows. Several strategies have been suggested as a solution to the congestion which results from this high demand outpacing the existing supply of transportation facilities.High (-)Occupancy Toll (HOT) lanes have become increasingly more popular as a feature on today's highway system. The I-95 Express HOT lane in Miami Florida, which is currently being expanded from a single Phase (Phase I) into two Phases, is one such HOT facility. With the growing abundance of such facilities comes the need for in- depth study of demand patterns and development of an appropriate pricing scheme which reduces congestion.This research develops a method for dynamic pricing on the I-95 HOT facility such as to minimize total travel time and reduce congestion. We apply non-linear programming (NLP) techniques and the finite difference stochastic approximation (FDSA), genetic algorithm (GA) and simulated annealing (SA) stochastic algorithms to formulate and solve the problem within a cell transmission framework. The solution produced is the optimal flow and optimal toll required to minimize total travel time and thus is the system-optimal solution.We perform a comparative evaluation of FDSA, GA and SA non-linear programmingalgorithms used to solve the NLP and the ANOVA results show that there are differences in the performance of the NLP algorithms in solving this problem and reducing travel time. We then conclude by demonstrating that econometric forecasting methods utilizing vector autoregressive (VAR) techniques can be applied to successfully forecast demand for Phase 2 of the 95 Express which is planned for 2014.
Show less - Date Issued
- 2013
- Identifier
- CFE0005000, ucf:50019
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005000