Current Search: AERMOD (x)
-
-
Title
-
VERIFICATION OF FAA'S EMISSIONS AND DISPERSION MODELING SYSTEM (EDMS).
-
Creator
-
Martin, Anjoli, Wayson, Roger, University of Central Florida
-
Abstract / Description
-
Air quality has been a major environmental concern for many years. Recently the issue of airport emissions has presented growing concerns and is being studied in much more depth. Airport emissions come from a variety of point, line and area sources, making emissions modeling for airports very complex and more involved. Accurate air quality models, specific to airport needs, are required to properly analyze this complex array of air pollution sources created by airports. Accurate air quality...
Show moreAir quality has been a major environmental concern for many years. Recently the issue of airport emissions has presented growing concerns and is being studied in much more depth. Airport emissions come from a variety of point, line and area sources, making emissions modeling for airports very complex and more involved. Accurate air quality models, specific to airport needs, are required to properly analyze this complex array of air pollution sources created by airports. Accurate air quality models are needed to plan for increased growth of current airports and address concerns over proposed new ones. The Federal Aviation Administration's (FAA) Emissions and Dispersion Modeling System (EDMS) is a program that is the required model for assessing emissions from airport sources. This research used EDMS Version 4.21, which incorporates the EPA dispersion model AERMOD, to model detailed airport data and compare the model's predicted values to the actual measured carbon monoxide concentrations at 25 locations at a major U.S. airport. Statistics relating the model characteristics as well as trends are presented. In this way, a thorough investigation of the accuracy of the EDMS modeled values of carbon monoxide was possible. EDMS modeling included two scenarios, the first scenario referred to as practice detail included general airport information that a modeler could find from the airport being studied and the second scenario referred to as research detail utilized very detailed information from observer logs during a three day observation period. Each of the modeling scenarios was compared to the field measured data and to each other. These comparisons are important to insure the model is adequately describing emissions sources at airports. Data analysis of this study was disappointing since measured levels of CO were generally higher than modeled values. Since EDMS is continually changing and improving perhaps these results can help enhance future models.
Show less
-
Date Issued
-
2006
-
Identifier
-
CFE0001282, ucf:46903
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0001282
-
-
Title
-
DETERMINING FLORIDA LANDFILL ODOR BUFFER DISTANCES USING AERMOD.
-
Creator
-
Figueroa, Veronica, Cooper, C. David, University of Central Florida
-
Abstract / Description
-
As U.S. landfills continue to grow in size, concerns about odorous gas emissions from landfills are increasing. For states that are expanding in population, such as Florida, odors from landfills are a major concern because new housing developments, needed to accommodate the rapid population growth, are creeping closer and closer to the existing landfills. As homes get closer to landfills, odor complaints are likely to become more frequent, causing landfill managers increased problems with...
Show moreAs U.S. landfills continue to grow in size, concerns about odorous gas emissions from landfills are increasing. For states that are expanding in population, such as Florida, odors from landfills are a major concern because new housing developments, needed to accommodate the rapid population growth, are creeping closer and closer to the existing landfills. As homes get closer to landfills, odor complaints are likely to become more frequent, causing landfill managers increased problems with public interactions. Odor buffer zones around landfills need to be established to give municipalities tools to help prevent the building of future homes too close to landfills. Using the latest air dispersion model, AERMOD, research predicted downwind odor concentrations from a Central Florida landfill. Accurate estimates of methane emissions throughout a Central Florida landfill were determined using a new technique developed as part of this research that uses hundreds of ambient air VOC measurements taken within a landfill, as receptors. Hundreds of point sources were placed on the landfill, and the standard Gaussian dispersion equations were solved by matrix inversion methods. The methane emission rates were then used as surrogates for odor emissions to predict downwind odor concentrations via AERMOD. By determining a critical zone around a landfill with regards to odor, stakeholders will be able to meet regulatory issues and assist their communities. Other beneficial uses from this research include: determination of existing gas collection system efficiencies, calculation of fugitive greenhouse gas emissions from municipal solid waste (MSW) landfills, and improved landfill gas management.
Show less
-
Date Issued
-
2008
-
Identifier
-
CFE0002200, ucf:47910
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0002200
-
-
Title
-
Monitoring and Modeling to Estimate Hydrogen Sulfide Emissions and Dispersion from Florida Construction and Demolition Landfills to Construct Odor Buffering Distances.
-
Creator
-
Bolyard, Steven, Cooper, Charles, Mackie, Kevin, Randall, Andrew, Zhang, Husen, University of Central Florida
-
Abstract / Description
-
Emissions of hydrogen sulfide (H2S) from construction and demolition (C & D) landfills can result in odors that are a significant nuisance to nearby neighborhoods and businesses. As Florida's population continues to grow and create development pressures, housing is built closer to existing landfills. Additionally, new landfills will be created in the future. This research project was undertaken to develop a detailed modeling methodology for use by counties and other landfill owners to provide...
Show moreEmissions of hydrogen sulfide (H2S) from construction and demolition (C & D) landfills can result in odors that are a significant nuisance to nearby neighborhoods and businesses. As Florida's population continues to grow and create development pressures, housing is built closer to existing landfills. Additionally, new landfills will be created in the future. This research project was undertaken to develop a detailed modeling methodology for use by counties and other landfill owners to provide them with an objective and scientifically defensible means to establish odor buffer zones around C & D landfills. A technique for estimating methane (and odorous gas) emissions from municipal solid waste (MSW) landfills was recently developed by researchers at the University of Central Florida. This technique was based on measuring hundreds of ambient methane concentrations near the surface of the landfill, and combining that data with matrix inversion mathematics to back-solve the dispersion equations. The technique was fully documented in two peer-reviewed journal articles. This project extends that methodology. In this work the author measured ambient H2S concentrations at various locations in a C & D landfill, and applied those same matrix inversion techniques to determine the H2S emission rates from the landfill. The emission rates were then input into the AERMOD dispersion model to determine H2S odor buffer distances around the landfill.Three sampling trips to one C & D landfill were undertaken, data were taken, and the modeling techniques were applied. One problem encountered was that H2S emissions from C & D landfills are typically about 1000 times smaller than methane emissions (from MSW landfills). Thus, H2S ambient concentrations often are near the detection limits of the instruments, and the data may not be as reliable. However, this approach could be used for any particular C & D landfill if the appropriate amount of data were available to characterize its emissions with some certainty. The graphical tool developed in this work shows isopleths of (")H2S(") concentrations at various distances, and color codes the isopleths into a (")green-yellow-red(") scheme (analogous to a traffic signal) that depicts zones where private landowners likely will not detect odors, where they may experience some odors, or where they likely will experience odors. The (")likelihood(") can be quantified by selecting the Nth highest hourly concentrations in one year to form the plot. In this study, N was conservatively selected as 8. Requiring that concentrations be at or below the 8th highest concentration in a year corresponds to a 99.9% probability of not exceeding that concentration at that distance in any future year. The graphical tool can be applied to any C & D landfill but each landfill is different. So this technique depends on having a fairly good estimate of the rate of emissions of H2S from the landfill in question, and at least one year's worth of hourly meteorological data (wind speed, direction, and stability class) that is representative of the landfill location. The meteorological data can be obtained with relative ease for most locations in Florida; however, the emission data must be obtained from on-site measurements for any given landfill.
Show less
-
Date Issued
-
2012
-
Identifier
-
CFE0004272, ucf:52879
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0004272