Current Search: Aerodynamics (x)
View All Items
- Title
- SOUNDING ROCKET REDESIGN AND OPTIMIZATION FOR PAYLOAD EXPANSION AND IN FLIGHT TELEMETRY TRANSMITTAL.
- Creator
-
Huffman, Matthew, Chew, Larry, University of Central Florida
- Abstract / Description
-
Due to renewed interest in the sub orbital rocket program of the Florida Space Authority and a surplus of Super Loki Sounding Rockets, an effort to improve the usefulness of this surplus is herein undertaken. Currently, the capacity of the payload compartment in the upper stage of the Super Loki system is very limited. A redesign of the upper stage will allow larger and more versatile payloads to be carried, assuming the appropriate design parameters are met. It has therefore been undertaken...
Show moreDue to renewed interest in the sub orbital rocket program of the Florida Space Authority and a surplus of Super Loki Sounding Rockets, an effort to improve the usefulness of this surplus is herein undertaken. Currently, the capacity of the payload compartment in the upper stage of the Super Loki system is very limited. A redesign of the upper stage will allow larger and more versatile payloads to be carried, assuming the appropriate design parameters are met. It has therefore been undertaken to create a design procedure that is comprehensive in scope in order to affect this redesign. This procedure includes five major components. These are the separation of the upper and lower stages, the stability of the vehicle, the altitude and velocity of the rocket, the mechanical loading and finally the aerodynamic heating. Semi-empirical methods were used whenever possible to allow comparison with experimental data. This procedure revealed that larger diameter upper stages might be used up to a reasonable maximum of four inches. The four-inch modification is found to be stable as were the smaller modifications considered. The altitude and velocity of the rocket were found via a simple Eulerian time stepping scheme resulting in an estimate of approximately 148,000ft for the four-inch dart. The mechanical loading analysis allowed for the material selection for the rocket components. Reinforced steel fins and carbon fiber tubing, for the payload section, are adequate to meet expected mechanical loads, those being, 16000psi for the fin section due to launcher forces, 22800psi for compressive plus torsion forces on the composite section and 18000psi for the ejection stresses. An ablative coating is considered necessary to counteract the 760ºF temperatures along the composite tube.
Show less - Date Issued
- 2005
- Identifier
- CFE0000546, ucf:46440
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000546
- Title
- Aeroelastic Investigation of a Circumferentially Varying Tip Gap in an Axial Compressor Rotor.
- Creator
-
Canon, Ornan, Kapat, Jayanta, Vasu Sumathi, Subith, Kauffman, Jeffrey, Mackie, Kevin, Kiesow, Hans-jurgen, University of Central Florida
- Abstract / Description
-
The tip leakage flow in axial compressors is a significant factor in engine performance and a subject of investigation over the last several decades. Many studies have already shown that the vortices generated by this tip leakage can have a negative impact on the surrounding flow field and overall performance, and could potentially lead to excitations as well. This study examines the effect of these vortices on aeroelasticity. Specifically, it looks at the effect from a circumferentially...
Show moreThe tip leakage flow in axial compressors is a significant factor in engine performance and a subject of investigation over the last several decades. Many studies have already shown that the vortices generated by this tip leakage can have a negative impact on the surrounding flow field and overall performance, and could potentially lead to excitations as well. This study examines the effect of these vortices on aeroelasticity. Specifically, it looks at the effect from a circumferentially varying tip gap, such as that produced by casing ovalization.For this project, the casing ovalization of an industrial gas turbine compressor was modeled using a frequency domain solver, without the need for a full wheel model. Both the vibratory and aerodynamic calculations were conducted in order to assess the aeroelastic response of the blade, as well as the aerodynamic impact. Engine test data was implemented in order to model realistic levels of casing ovalization and to calibrate the analytical models. Comparisons to a well-established method are also conducted to further calibrate the models. The calculations showed that for the gap variations imposed, the instantaneous effects aligned with expectations. However, the variation from small and large gaps had a canceling effect on each other over the cycle of oscillation around the engine.
Show less - Date Issued
- 2016
- Identifier
- CFE0006682, ucf:51926
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006682
- Title
- VORTEX TILTING AND THE ENHANCEMENT OF SPANWISE FLOW IN FLAPPING WING FLIGHT.
- Creator
-
Frank, Spencer, Raghavan, Seetha, University of Central Florida
- Abstract / Description
-
The leading edge vortex has been identified as the most critical flow structure for producing lift in flapping wing flight. Its stability depends on the transport of the entrained vorticity into the wake via spanwise flow. This study proposes a hypothesis for the generation and enhancement of spanwise flow based on the chordwise vorticity that results from the tilting of the leading edge vortex and trailing edge vortex. We investigate this phenomenon using dynamically scaled robotic model...
Show moreThe leading edge vortex has been identified as the most critical flow structure for producing lift in flapping wing flight. Its stability depends on the transport of the entrained vorticity into the wake via spanwise flow. This study proposes a hypothesis for the generation and enhancement of spanwise flow based on the chordwise vorticity that results from the tilting of the leading edge vortex and trailing edge vortex. We investigate this phenomenon using dynamically scaled robotic model wings. Two different wing shapes, one rectangular and one based on Drosophila melanogaster (fruit fly), are submerged in a tank of mineral oil and driven in a flapping motion. Two separate kinematics, one of constant angular velocity and one of sinusoidal angular velocity are implemented. In order to visualize the flow structure, a novel three dimensional particle image velocimetry system is utilized. From the three dimensional information obtained the chordwise vorticity resulting from the vortex tilting is shown using isosurfaces and planar slices in the wake of the wing. It is observed that the largest spanwise flow is located in the area between the chordwise vorticity of the leading edge vortex and the chordwise vorticity of the trailing edge vortex, supporting the hypothesis that the vortex tilting enhances the spanwise flow. Additionally the LEV on the rectangular wing is found to detach at about 80% span as opposed to 60% span for the elliptical wing. Also, two distinct regions of spanwise flow, one at the base and one at the tip, are observed at the beginning of the sinusoidal kinematic, and as the velocity of the wing increases these two regions unionize into one. Lastly, the general distribution of vorticity around each wing is found to be nearly the same, indicating that different wing shapes do not greatly affect the distribution of vorticity nor stability mechanisms in flapping flight. In summary the tilting mechanism helps to explain the overall flow structure and the stability of the leading edge vortex.
Show less - Date Issued
- 2011
- Identifier
- CFH0004124, ucf:44875
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004124
- Title
- Pressure Image Based Attitude Controller for Small Unmanned Aerial Vehicles.
- Creator
-
Thompson, Kenneth, Xu, Yunjun, Gou, Jihua, Lin, Kuo-Chi, University of Central Florida
- Abstract / Description
-
As technology improves, small unmanned aerial vehicles (SUAV) have been identified for their utility in a variety of applications in which larger unmanned craft may be incapable of accomplishing mission objectives. These aircraft with their small size and long flight durations are ideal for hazardous inspection and long duration surveillance missions. One challenge preventing the widespread adoption of these systems is their instability to abrupt changes in the flow field around them due to...
Show moreAs technology improves, small unmanned aerial vehicles (SUAV) have been identified for their utility in a variety of applications in which larger unmanned craft may be incapable of accomplishing mission objectives. These aircraft with their small size and long flight durations are ideal for hazardous inspection and long duration surveillance missions. One challenge preventing the widespread adoption of these systems is their instability to abrupt changes in the flow field around them due to wind gusts or flow separation.Currently, traditional rigid body based sensors are implemented in their flight control systems, which are sufficient in higher inertia aircraft for accurate control.However, in low inertia SUAV applications during a flow event, often, the inertial sensors are incapable of detecting the event before catastrophic failure.A method of directly measuring the flow information around the SUAV in order to generate control commands will improve the stability of these systems by allowing these systems to directly react to flow events.In contrast, established inertial based control systems can only react to changes in vehicle dynamics caused by flow events.Such a method is developed utilizing a network of pressure and shear sensors embedded in the wing and used to create (")flow images(") which can be easily manipulated to generate control commands.A method of accurately calculating the aerodynamic moment acting on the aircraft based on the flow image is also developed for implementation of flow image-based control in real world systems.
Show less - Date Issued
- 2018
- Identifier
- CFE0007417, ucf:52722
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0007417
- Title
- Aerodynamic Characteristics of a Gas Turbine Exhaust Diffuser with an Accompanying Exhaust Collection System.
- Creator
-
Bernier, Bryan, Kapat, Jayanta, Deng, Weiwei, Raghavan, Seetha, University of Central Florida
- Abstract / Description
-
The effects of an industrial gas turbine's Exhaust Collector Box (ECB) geometry on static pressure recovery and total pressure loss were investigated in this study experimentally and computationally. This study aims to further understand how exit boundary conditions affect the performance of a diffuser system as well as the accuracy of industry standard computational models. A design of experiments approach was taken using a Box-Behnken design method for investigating three geometric...
Show moreThe effects of an industrial gas turbine's Exhaust Collector Box (ECB) geometry on static pressure recovery and total pressure loss were investigated in this study experimentally and computationally. This study aims to further understand how exit boundary conditions affect the performance of a diffuser system as well as the accuracy of industry standard computational models. A design of experiments approach was taken using a Box-Behnken design method for investigating three geometric parameters of the ECB. In this investigation, the exhaust diffuser remained constant through each test, with only the ECB being varied. A system performance analysis was conducted for each geometry using the total pressure loss and static pressure recovery from the diffuser inlet to the ECB exit. Velocity and total pressure profiles obtained with a hotwire anemometer and Kiel probe at the exit of the diffuser and at the exit of the ECB are also presented in this study. A total of 13 different ECB geometries are investigated at a Reynolds number of 60,000. Results obtained from these experimental tests are used to investigate the accuracy of a 3-dimensional RANS with realizable k-? turbulence model from the commercial software package Star-CCM+. The study confirms the existence of strong counter-rotating helical vortices within the ECB which significantly affect the flow within the diffuser. Evidence of a strong recirculation zone within the ECB was found to force separation within the exhaust diffuser which imposed a circumferentially asymmetric pressure field at the inlet of the diffuser. Increasing the ECB width proved to decrease the magnitude of this effect, increasing the diffuser protrusion reduced this effect to a lesser degree. The combined effect of increasing the ECB Length and Width increased the expansion area ratio, proving to increase the system pressure recovery by as much as 19% over the nominal case. Additionally, the realizable k-? turbulence model was able to accurately rank all 13 cases in order by performance; however the predicted magnitudes of the pressure recovery and total pressure loss were poor for the cases with strong vortices. For the large volume cases with weak vortices, the CFD was able to accurately represent the total pressure loss of the system within 5%.
Show less - Date Issued
- 2012
- Identifier
- CFE0004517, ucf:49296
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004517
- Title
- FUNDAMENTAL UNDERSTANDING OF INTERACTIONS AMONG FLOW, TURBULENCE, AND HEAT TRANSFER IN JET IMPINGEMENT COOLING.
- Creator
-
Hossain, Md. Jahed, Kapat, Jayanta, Ahmed, Kareem, Gordon, Ali, Wiegand, Rudolf, University of Central Florida
- Abstract / Description
-
The flow physics of impinging jet is very complex and is not fully understood yet. The flow field in an impingement problem comprised of three different distinct regions: a free jet with a potential core, a stagnation region where the velocity goes to zero as the jet impinges onto the wall and a creation of wall jet region where the boundary layer grows radially outward after impinging. Since impingement itself is a broad topic, effort is being made in the current study to narrow down on...
Show moreThe flow physics of impinging jet is very complex and is not fully understood yet. The flow field in an impingement problem comprised of three different distinct regions: a free jet with a potential core, a stagnation region where the velocity goes to zero as the jet impinges onto the wall and a creation of wall jet region where the boundary layer grows radially outward after impinging. Since impingement itself is a broad topic, effort is being made in the current study to narrow down on three particular geometric configurations (a narrow wall, an array impingement configuration and a curved surface impingement configuration) that shows up in a typical gas turbine impingement problem in relation to heat transfer. Impingement problems are difficult to simulate numerically using conventional RANS models. It is worth noting that the typical RANS model contains a number of calibrated constants and these have been formulated with respect to relatively simple shear flows. As a result typically these isotropic eddy viscosity models fail in predicting the correct heat transfer value and trend in impingement problem where the flow is highly anisotropic. The common RANS-based models over predict stagnation heat transfer coefficients by as much as 300% when compared to measured values. Even the best of the models, the v^2-f model, can be inaccurate by up to 30%. Even though there is myriad number of experimental and numerical work published on single jet impingement; the knowledge gathered from these works cannot be applied to real engineering impingement cooling application as the dynamics of flow changes completely. This study underlines the lack of experimental flow physics data in published literature on multiple jet impingement and the author emphasized how important it is to have experimental data to validate CFD tools and to determine the suitability of Large Eddy Simulation (LES) in industrial application. In the open literature there is not enough study where experimental heat transfer and flow physics data are combined to explain the behavior for gas turbine impingement cooling application. Often it is hard to understand the heat transfer behavior due to lack of time accurate flow physics data hence a lot of conjecture has been made to explain the phenomena. The problem is further exacerbated for array of impingement jets where the flow is much more complex than a single round jet. The experimental flow field obtained from Particle Image Velocimetry (PIV) and heat transfer data obtained from Temperature Sensitive Paint (TSP) from this work will be analyzed to understand the relationship between flow characteristics and heat transfer for the three types of novel geometry mentioned above.There has not been any effort made on implementing LES technique on array impingement problem in the published literature. Nowadays with growing computational power and resources CFD are widely used as a design tool. To support the data gathered from the experiment, LES is carried out in narrow wall impingement cooling configuration. The results will provide more accurate information on impingement flow physics phenomena where experimental techniques are limited and the typical RANS models yield erroneous resultThe objective of the current study is to provide a better understanding of impingement heat transfer in relation to flow physics associated with it. As heat transfer is basically a manifestation of the flow and most of the flow in real engineering applications is turbulent, it is very important to understand the dynamics of flow physics in an impingement problem. The work emphasis the importance of understanding mean velocities, turbulence, jet shear layer instability and its importance in heat transfer application. The present work shows detailed information of flow phenomena using Particle Image Velocimetry (PIV) in a single row narrow impingement channel. Results from the RANS and LES simulations are compared with Particle Image Velocimetry (PIV) data. The accuracy of LES in predicting the flow field and heat transfer of an impingement problem is also presented the in the current work as it is validated against experimental flow field measured through PIV.Results obtained from the PIV and LES shows excellent agreement for predicting both heat transfer and flow physics data. Some of the key findings from the study highlight the shortcomings of the typical RANS models used for the impingement heat transfer problem. It was found that the stagnation point heat transfer was over predicted by as much as 48% from RANS simulations when compared to the experimental data. A lot of conjecture has been made in the past for RANS' ability to predict the stagnation point heat transfer correctly. The length of the potential core for the first jet was found to be ~ 2D in RANS simulations as oppose to 1D in PIV and LES, confirm the possible underlying reason for this discrepancy. The jet shear layer thickness was underpredicted by ~ 40% in RANS simulations proving the model is not diffusive enough for a flow like jet impingement. Turbulence production due to shear stress was over predicted by ~130% and turbulence production due to normal stresses were underpredicted by ~40 % in RANS simulation very close to the target wall showing RANS models fail where both strain rate and shear stress plays a pivotal role in the dynamics of the flow. In the closing, turbulence is still one of the most difficult problems to solve accurately, as has been the case for about a century. A quote below from the famous mathematician, Horace Lamb (1849-1934) express the level of difficulty and frustration associated with understanding turbulence in fluid mechanics. (")I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics, and the other is the turbulent motion of fluids. And about the former I am rather optimistic.(")Source: http://scienceworld.wolfram.com/biography/Lamb.htmlThis dissertation is expected to shed some light onto one specific example of turbulent flows.
Show less - Date Issued
- 2016
- Identifier
- CFE0006463, ucf:51424
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006463
- Title
- INTERACTION BETWEEN SECONDARY FLOW AND FILM COOLING JETS OF A REALISTIC ANNULAR AIRFOIL CASCADE (HIGH MACH NUMBER).
- Creator
-
Nguyen, Cuong, Kapat, Jayanta, University of Central Florida
- Abstract / Description
-
Film cooling is investigated on a flat plate both numerically and experimentally. Conical shaped film hole are investigated extensively and contribute to the current literature data, which is extremely rare in the open public domain. Both configuration of the cylindrical film holes, with and without a trench, are investigated in detail. Design of experiment technique was performed to find an optimum combination of both geometrical and fluid parameters to achieve the best film cooling...
Show moreFilm cooling is investigated on a flat plate both numerically and experimentally. Conical shaped film hole are investigated extensively and contribute to the current literature data, which is extremely rare in the open public domain. Both configuration of the cylindrical film holes, with and without a trench, are investigated in detail. Design of experiment technique was performed to find an optimum combination of both geometrical and fluid parameters to achieve the best film cooling performance. From this part of the study, it shows that film cooling performance can be enhanced up to 250% with the trenched film cooling versus non-trenched case provided the same amount of coolant. Since most of the relevant open literature is about film cooling on flat plate endwall cascade with linear extrusion airfoil, the purpose of the second part of this study is to examine the interaction of the secondary flow inside a 3D cascade and the injected film cooling jets. This is employed on the first stage of the aircraft gas turbine engine to protect the curvilinear (annular) endwall platform. The current study investigates the interaction between injected film jets and the secondary flow both experimentally and numerically at high Mach number (M=0.7). Validation shows good agreement between obtained data with the open literature. In general, it can be concluded that with an appropriate film coolant to mainstream blowing ratio, one can not only achieve the best film cooling effectiveness (FCE or η) on the downstream endwall but also maintain almost the same aerodynamic loss as in the un-cooled baseline case. Film performance acts nonlinearly with respect to blowing ratios as with film cooling on flat plate, in the other hand, with a right blowing ratio, film cooling performance is not affect much by secondary flow. In turn, film cooling jets do not increase pressure loss at the downstream wake area of the blades.
Show less - Date Issued
- 2010
- Identifier
- CFE0003546, ucf:48944
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0003546