Current Search: Alzheimer's Disease (x)
View All Items
- Title
- Pebbles and Shards.
- Creator
-
Kindle, Edith, Bartkevicius, Jocelyn, Uttich, Laurie, Rushin, Patrick, University of Central Florida
- Abstract / Description
-
Pebbles and Shards is a collection of personal essays based on family relationships that focus upon motherhood, responsibility, and the complexity of love and loss. The essays explore how people cope with the inevitability of loss and how they move beyond that loss to find something meaningful, perhaps even beautiful. They reflect upon success and failure in the face of loss and how, either way, life goes on, heedless of people's desires and plans.The essays in Pebbles and Shards, while meant...
Show morePebbles and Shards is a collection of personal essays based on family relationships that focus upon motherhood, responsibility, and the complexity of love and loss. The essays explore how people cope with the inevitability of loss and how they move beyond that loss to find something meaningful, perhaps even beautiful. They reflect upon success and failure in the face of loss and how, either way, life goes on, heedless of people's desires and plans.The essays in Pebbles and Shards, while meant to stand alone, are thematically connected so that, read together, each story resonates with the others. In (")Promises,(") I explore the fear of watching my mother die of Alzheimer's disease. In related essays (")Frame by Frame(") and (")In Darkness,(") I focus on my mother's efforts to struggle with Alzheimer's and how, as an adopted daughter, I underwent a role-reversal and became the mother figure. Other essays, such as (")Heart of a Deadhead(") and (")Circus,(") consider the mothering impulse, especially the guilt and conflict that so often accompany my desire to nurture others. In attempting to support and strengthen those who seem (")weak,(") I have sometimes found that my own actions and thoughts underscore a deeper weakness in myself.As a collection, Pebbles and Shards contemplates the suffering and joy that is a family.
Show less - Date Issued
- 2013
- Identifier
- CFE0004704, ucf:49813
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004704
- Title
- TARGETED DELIVERY OF A THERAPEUTIC PROTEIN FOR THE TREATMENT OF ALZHEIMER'S DISEASE.
- Creator
-
Holman, Heather, Sugaya, Kiminobu, University of Central Florida
- Abstract / Description
-
Neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease are linked to mitochondrial dysfunction and the underexpression of TOM40, a protein with chaperone-like qualities that is responsible for transporting precursor proteins into the mitochondria. Overexpression of TOM40 is reported to partially restore mitochondrial dysfunction and decrease the accumulation of neurotoxic aggregates of ?-synuclein. Our goal is to develop an effective method for delivery of TOM40...
Show moreNeurodegenerative diseases such as Parkinson's disease and Alzheimer's disease are linked to mitochondrial dysfunction and the underexpression of TOM40, a protein with chaperone-like qualities that is responsible for transporting precursor proteins into the mitochondria. Overexpression of TOM40 is reported to partially restore mitochondrial dysfunction and decrease the accumulation of neurotoxic aggregates of ?-synuclein. Our goal is to develop an effective method for delivery of TOM40 protein to the brain. Previous studies have used lentiviruses to carry TOM40 into the hippocampus of ?-synuclein transgenic mice. The disadvantage of lentiviral transfection is the random insertions of the target gene into the host genome, which could cause toxic effects. Synthetic phospholipid vesicles containing TOM40 were considered as an alternative delivery method, but these "liposomes" elicit not only toxicity, but also an immune response. Thus, development of a safer delivery method of TOM40 protein is needed. We investigated exosomes, which are extracellular vesicles originating from multivesicular endosomes filled with protein, lipid, or RNA cargoes for cell-cell communication. Since exosomes are created from host cells, they are non-immunogenic and may be a more desirable method. Expression constructs have been made for the production of TOM40 protein within or on the surface of exosomes. In order to target the delivery of TOM40 to the brain, we attached peptides to the surface of the exosomes, which specifically interact with receptors on neural cells. We attempted to confirm the functionality of the expression constructs through immunocytochemistry followed by flow cytometry and Western blotting.
Show less - Date Issued
- 2018
- Identifier
- CFH2000328, ucf:45803
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000328
- Title
- STUDIES ON THE NOVEL FUNCTION OF AMYLOID PRECURSOR PROTEIN IN GLIAL DIFFERENTIATION OF NEURAL STEM CELLS.
- Creator
-
Kwak, Young-Don, Sugaya, Kiminobu, University of Central Florida
- Abstract / Description
-
Although amyloid beta (A beta) deposition has been a hallmark of Alzheimer's disease (AD), the physiological function of amyloid precursor protein (APP) is not clear. Our results suggested that high concentration of APP induces glial differentiation while physiological level of APP promotes migration and differentiation of neural stem cell (HNSC). HNSCs were mainly differentiated into astrocytes when they are transplanted into APP transgenic mouse brain or treated with a high...
Show moreAlthough amyloid beta (A beta) deposition has been a hallmark of Alzheimer's disease (AD), the physiological function of amyloid precursor protein (APP) is not clear. Our results suggested that high concentration of APP induces glial differentiation while physiological level of APP promotes migration and differentiation of neural stem cell (HNSC). HNSCs were mainly differentiated into astrocytes when they are transplanted into APP transgenic mouse brain or treated with a high concentration of secreted-type APP (sAPP) in culture. Staurosporine (STS) induced a distinctive astrocytic morphology in NT-2/D1 neural progenitor cells with expressions of APP and astrocyte-specific markers, glial fibrillary acidic protein (GFAP), aspartate transporter, and glutamate transporter-1. Expression of APP is correlated with GFAP expression in both mRNA and protein level in this experiment. Inhibition of APP expression by RNA interference (RNAi) or treatment with MEK1 inhibitor (PD098059), which reduces APP expression by suppressing ERK phosphorylation, abolished GFAP expression. These results indicate that STS induces glial differentiation of neuronal progenitor cells by increasing APP levels through activation of ERK pathway. We also found that APP-induced glial differentiation of neural progenitor NT-2/D1 cells is mediated by activation of IL-6/gp130 and notch signaling pathway. Treatment of APP activated IL-6/gp130 signal pathway via protein-protein interaction between APP and gp130 and it increased the gene expressions of CNTF, gp130 and JAK1, and phosphorylation of STAT3 while gene silencing of CNTF, JAK1 or STAT3 by RNAi, or treatment the cells with antibodies recognizing gp130 suppressed GFAP expression, indicating these molecules are crucial for APP-induced glial differentiation. Thus treatment of sAPP may promote glial differentiation of neural progenitor cells by activation of IL-6/gp130 signaling cascade. Treatment of sAPP increased the generation of notch intracellular domain as well as gene expression of Hes1 but did not change expression levels of notch or its ligands. We also found protein-protein interaction of APP and notch using immunoprecipitation suggesting that glial differentiation of NT-2/D1 cells is mediated by the physical interaction between APP and notch. N-terminal domain of APP (1-205 a.a.) alone can bind to notch and activate these signaling cascade in NT-2/D1 cells. Thus, APP may induce glial differentiation through activation of IL-6/gp130 and notch signal cascade by binding with its N-terminal domain. Taken together, our results suggest that APP regulates neural stem cell (NSC) differentiation through IL-6/gp130 and notch signaling pathway. Furthermore, the activation of both glial differentiation mechanisms may be necessary to potentiate APP-induced glial differentiation of NSC. Altered APP metabolism in Down syndrome and Alzheimer's disease may accelerate premature glial differentiation of NSCs, resulting in gliosis found in these diseases. Although it is not clear that how adult neurogenesis contributes to maintain normal brain function, destruction of neuroreplacement mechanism by NSCs may pose a problem. We may also have to consider effect of APP on the stem cell therapy for these diseases, since HNSCs may not properly differentiate into neurons under these pathological conditions.
Show less - Date Issued
- 2006
- Identifier
- CFE0001375, ucf:46980
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001375
- Title
- VOICE ONSET TIME PRODUCTION IN INDIVIDUALS WTH ALZHEIMER'S DISEASE.
- Creator
-
Baker, Julie Baker, Ryalls, Jack, University of Central Florida
- Abstract / Description
-
In the present study, voice onset time (VOT) measurements were compared between a group of individuals with moderate Alzheimer's disease (AD) and a group of healthy age- and gender-matched peers. Participants read a list of consonant-vowel-consonant (CVC) words, which included the six stop consonants. Recordings were gathered and digitized. The VOT measurements were made from oscillographic displays obtained from the Brown Laboratory Interactive Speech System (BLISS) implemented on an IBM...
Show moreIn the present study, voice onset time (VOT) measurements were compared between a group of individuals with moderate Alzheimer's disease (AD) and a group of healthy age- and gender-matched peers. Participants read a list of consonant-vowel-consonant (CVC) words, which included the six stop consonants. Recordings were gathered and digitized. The VOT measurements were made from oscillographic displays obtained from the Brown Laboratory Interactive Speech System (BLISS) implemented on an IBM-compatible computer. VOT measures for the participants' six stop consonant productions were subjected to statistical analysis. The results of the study indicated that differences in VOT values were not statistically significant in the speakers with Alzheimer's disease from the normal control speakers.
Show less - Date Issued
- 2006
- Identifier
- CFE0001269, ucf:46918
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001269
- Title
- STRUCTURAL TRANSITION DURING FIBRILLOGENESIS OF AMYLOID ? PEPTIDE.
- Creator
-
Sidrak, George, Tatulian, Suren, University of Central Florida
- Abstract / Description
-
Alzheimer's Disease (AD) is a neurodegenerative disease marked by progressive neuronal cell death, leading to dementia. AD is the most common disease that results in dementia and largely affects the elderly, with five million people in the United States diagnosed with the disease as of 2015 and approximately 35 million people worldwide. Diseases resulting in dementia cost the US healthcare system an estimated $172 billion in 2010 and that cost is expected to increase as the population ages...
Show moreAlzheimer's Disease (AD) is a neurodegenerative disease marked by progressive neuronal cell death, leading to dementia. AD is the most common disease that results in dementia and largely affects the elderly, with five million people in the United States diagnosed with the disease as of 2015 and approximately 35 million people worldwide. Diseases resulting in dementia cost the US healthcare system an estimated $172 billion in 2010 and that cost is expected to increase as the population ages and as diagnostic techniques improve so that more people are treated (Holtzman, 2011). The disease was first reported by psychiatrist Alois Alzheimer at the onset of the 20th century, when one of his patients "suffered memory loss, disorientation, hallucinations and delusions and died at the age of 55," then was found to have severe brain atrophy post-mortem (Cipriani, Dolciotti, Picchi, & Bonuccelli, 2011). There are palliative treatments available that marginally slow disease progression but there is currently no cure for the disease (Awasthi, Singh, Pandey, & Dwivedi, 2016). More research is needed to develop effective therapeutic strategies to combat the disease. Currently, AD cytotoxicity is believed to be caused by increased amyloid ? (A?) peptide plaque deposition in the brain, as described by the amyloid cascade hypothesis (Barage & Sonawane, 2015). The current understanding is that oligomers of A? peptide lead to neuronal death through multiple mechanisms, most notably hyper-phosphorylation of the tau protein. Having a better understanding of the structural changes in the fibrillization process of A? will provide a broader insight into mechanisms of cell death and open new possibilities for pharmacological treatments, which is what this research intends to provide.
Show less - Date Issued
- 2017
- Identifier
- CFH2000178, ucf:45994
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000178
- Title
- Cerium oxide nanoparticles act as a unique catalyst and scavenge nitric oxide and peroxynitrite and decrease RNS in vitro and in vivo.
- Creator
-
Dowding, Janet, Self, William, Bossy-Wetzel, Ella, Zervos, Antonis, Seal, Sudipta, Santra, Swadeshmukul, University of Central Florida
- Abstract / Description
-
Cerium oxide nanoparticles (CeO2 NPs)(nanoceria) have been shown to possess a substantial oxygen storage capacity via the interchangeable surface reduction and oxidation of cerium atoms, cycling between the Ce4+ and Ce3+ redox states. Reduction of Ce4+ to Ce3+ causes oxygen vacancies or defects on the surface of the crystalline lattice structure of the particles, generating a cage for redox reactions to occur. The study of the chemical and biological properties of CeO2 NPs has expanded...
Show moreCerium oxide nanoparticles (CeO2 NPs)(nanoceria) have been shown to possess a substantial oxygen storage capacity via the interchangeable surface reduction and oxidation of cerium atoms, cycling between the Ce4+ and Ce3+ redox states. Reduction of Ce4+ to Ce3+ causes oxygen vacancies or defects on the surface of the crystalline lattice structure of the particles, generating a cage for redox reactions to occur. The study of the chemical and biological properties of CeO2 NPs has expanded recently, and the methods used to synthesize these materials are also quite diverse. This has led to a plethora of studies describing various preparations of CeO2 NPs for potential use in both industry and for biomedical research. Our own work has centered on studies that measure the ability of water-based CeO2 NPs materials to reduce reactive oxygen and nitrogen species in biological systems, and correlating changes in surface chemistry and charge to the catalytic nature of the particles. The application in experimental and biomedical research of CeO2 NPs began with the discovery that water-based cerium oxide nanoparticles could act as superoxide dismutase mimetics followed by their ability to reduce hydrogen dioxide similar to catalase. While their ROS scavenging ability was well established, their ability to interact with specific RNS species, specifically nitric oxide (NO) or peroxynitrite (ONOO-) was not known. The studies described in this dissertation focus on the study of RNS and cerium oxide nanoparticles.Our in vitro work revealed that CeO2 NPs that have higher levels of reduced cerium sites (3+) at the surface (which are effective SOD mimetics) are also capable of accelerating the decay of peroxynitrite in vitro. In contrast, CeO2 NPs that have fewer reduced cerium sites at the particle surface (which also exhibit better catalase mimetic activity) have NO scavenging capabilities as well as some reactivity with peroxynitrite. Our studies and many others have shown cerium oxide nanoparticles can reduce ROS and RNS in cell culture or animal models. The accumulation of ROS and RNS is a common feature of many diseases including Alzheimer's disease (AD). Testing our CeO2 NPS in cortical neurons, we used addition of A? peptide as an AD model system. CeO2 NPs delayed A?-induced mitochondrial fragmentation and neuronal cell death. When mitochondrial ROS levels are increased, mitochondrial fission is activated by DRP1 S616 phosphorylation. Specifically, our studies showed the reduction of phosphorylated DRP1 S616 in the presence of CeO2 NPs. Results from our studies have begun to unravel the molecule mechanism behind the catalytic nature of how CeO2 NPs reduce ROS/RNS in biological systems and represents an important step forward to test the potential neuroprotective effects of CeO2 NPs in model systems of AD.A plethora of studies describing various preparations of CeO2 NPs for potential use in both industry and for biomedical research have been described in the past five years. It has become apparent that the outcomes of CeO2 NPs exposure can vary as much as the synthesis methods and cell types tested. In an effort to understand the disparity in reports describing the toxicity or protective effects of exposure to CeO2 NPs, we compared CeO2 NPs synthesized by three different methods; H2O2 (CNP1), NH4OH (CNP2) or hexamethylenetetramine (HMT-CNP1). Exposure to HMT-CNP1 led to reduced metabolic activity (MTT) at a 10-fold lower concentration than CNP1 or CNP2 and surprisingly, exposure to HMT-CNP1 led to substantial decreases in the ATP levels. Mechanistic studies revealed that HMT-CNP1 and CNP2 exhibited robust ATPase (phosphatase) activity, whereas CNP1 lacked ATPase activity. HMT-CNP1 were taken up into HUVECs far more efficiently than the other preparations of CeO2 NPs. Taken together, these results suggest the combination of increased uptake and ATPase activity of HMT-CNP1 may underlie the mechanism of the toxicity of this preparation of CeO2 NPs, and may suggest ATPase activity should be considered when synthesizing CeO2 NPs for use in biomedical applications. Overall the studies have uncovered two new catalytic activities for water-based CeO2 NPs (NO scavenging and accelerated decay of peroxynitrite), demonstrated their ability to reduce RNS in an AD cell culture model as well as identifying a catalytic activity (phosphatase) that may underlie the observed toxicity of CeO2 NPs reported in other studies.
Show less - Date Issued
- 2012
- Identifier
- CFE0004782, ucf:49783
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004782
- Title
- In Vitro Characterization of Unmodified and Pyroglutamylated Alzheimer's Amyloid beta peptide.
- Creator
-
Matos, Jason, Tatulian, Suren, Teter, Kenneth, Davidson, Victor, University of Central Florida
- Abstract / Description
-
Plaques of amyloid ? peptide (A?) are a hallmark trait of Alzheimer's disease (AD). However, the precise role of A? aggregates is not well understood. Recent studies have identified that naturally occurring N-terminal truncation and pyroglutamylation of A? significantly increases its neurotoxicity by an unknown mechanism. Content of pyroglutamylated A? (pE-A?) in AD brains has been shown to reach up to 50% of total A?. Modified pE-A? co-aggregates with A? by a seeding mechanism and forms...
Show morePlaques of amyloid ? peptide (A?) are a hallmark trait of Alzheimer's disease (AD). However, the precise role of A? aggregates is not well understood. Recent studies have identified that naturally occurring N-terminal truncation and pyroglutamylation of A? significantly increases its neurotoxicity by an unknown mechanism. Content of pyroglutamylated A? (pE-A?) in AD brains has been shown to reach up to 50% of total A?. Modified pE-A? co-aggregates with A? by a seeding mechanism and forms structurally distinct and highly toxic oligomers. We studied structural transitions of the full-length A?1-42, its pyroglutamylated form A?pE3-42, their 9:1 (A?1-42/A?pE3-42) and 1:1 molar combinations. Transmission electron microscopy was used to directly visualize the fibrils of the samples in a buffer mimicking physiological environment. Atomic force microscopy measurements were done to determine rate of second nucleation events in fibrils. Thioflavin-T fluorescence indicated that low ionic strength suppressed the aggregation of A?pE3-42 but promoted that of A?1-42, suggesting different paths of fibrillogenesis of unmodified A? and pE-A?. Interestingly, A?pE3-42 at only 10% significantly facilitated the fibrillization of A?1-42 at near physiological ionic strength but had little effect at low salt. Circular dichroism and Fourier transform infrared (FTIR) spectroscopy were used to characterize the structural transitions during fibrillogenesis. In aqueous buffer, both unmodified A? and pE-A? peptides adopted parallel intermolecular ?-structure. Interestingly, A?pE3-42 contained lower ?-sheet content than 13C-A?1-42, while retaining significantly larger fractions of ?-helical and turn structures. Structural details of A? and pE-A? combinations were unveiled by isotope-edited FTIR spectroscopy, using 13C-labeled A?1-42 and unlabeled A?pE3-42. When exposed to environmental humidity, A?pE3-42 not only maintained an increased fraction of ?-helix but also was able to reverse 13C-A?1-42 ?-sheet structure. These data provide a novel structural mechanism for pE-A? hypertoxicity; pE-A? undergoes fasternucleation due to its increased hydrophobicity, thus promoting formation of smaller, hypertoxic oligomers of partial ?-helical structure.
Show less - Date Issued
- 2014
- Identifier
- CFE0005378, ucf:50465
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0005378
- Title
- AMYLOID-BETA42 TOXICITY REDUCTION IN HUMAN NEUROBLASTOMA CELLS USING CHOLERA TOXIN B SUBUNIT-MYELIN BASIC PROTEIN EXPRESSED IN CHLOROPLASTS.
- Creator
-
Ayache, Alexandra, Daniell, Henry, University of Central Florida
- Abstract / Description
-
Alzheimer's disease (AD) is an age progressive neurodegenerative brain disorder, affecting 37 million people worldwide. Cleavage of amyloid precursor protein by β- and γ-secretase produces the amyloid-beta (Aβ) protein, which significantly contributes to AD pathogenesis. The Aβ aggregates, formed at the surface of neurons and intracellularly, cause neurotoxicity and decrease synaptic function. Inhibiting or degrading Aβ accumulation is a key goal for development of new AD treatments. Evidence...
Show moreAlzheimer's disease (AD) is an age progressive neurodegenerative brain disorder, affecting 37 million people worldwide. Cleavage of amyloid precursor protein by β- and γ-secretase produces the amyloid-beta (Aβ) protein, which significantly contributes to AD pathogenesis. The Aβ aggregates, formed at the surface of neurons and intracellularly, cause neurotoxicity and decrease synaptic function. Inhibiting or degrading Aβ accumulation is a key goal for development of new AD treatments. Evidence shows that human Myelin Basic Protein (MBP) binds to and degrades Aβ thereby, preventing cytotoxicity. A potential method for oral drug delivery that will allow plant-derived bioencapsulated MBP to pass through intestinal epithelium and bypass denaturing stomach acidity is quite novel. Cholera Toxin B subunit (CTB), when fused with MBP, can serve as a vehicle for oral delivery of this chloroplast expressed therapeutic protein into the systemic circulation. Within chloroplast, CTB forms a pentameric structure that binds to GM1 ganglioside receptors, allowing receptor-mediated endocytosis. In order to investigate protein entry through neuronal GM1 receptors, we first created CTB fused to the green fluorescent protein (GFP). Incubation of this fusion protein with human neuroblastoma cells resulted in GFP entry into these cells whereas GFP alone was unable to enter. Similarly, co-incubation of CTB-MBP, via neuronal GM1 binding, allowed MBP to reduce neurotoxicity of Aβ42 treated cells by 37.1%. Delivery of CTB-MBP through GM1 receptor mediated binding should therefore facilitate oral administration, storage, heat stability and low cost AD treatment.
Show less - Date Issued
- 2012
- Identifier
- CFH0004249, ucf:44916
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH0004249
- Title
- Neurological profile of older ApoE-PON1 double knockout mice.
- Creator
-
Mitra, Connie, Parthasarathy, Sampath, Kim, Yoon-Seong, Zhao, Jihe, University of Central Florida
- Abstract / Description
-
Atherosclerosis is a cardiovascular disease where plaques made up of lipids in the form of cholesterol ester build up in the carotid and innominate arteries that supply blood to the brain. Accumulation of the plaques limit the flow of blood and nutrients to the brain, leading to diminished oxygen supply, increased oxidative stress and cell death. All these have been implicated in Alzheimer's disease (AD). Alzheimer's disease, a chronic, progressive, age related neurodegenerative disorder is...
Show moreAtherosclerosis is a cardiovascular disease where plaques made up of lipids in the form of cholesterol ester build up in the carotid and innominate arteries that supply blood to the brain. Accumulation of the plaques limit the flow of blood and nutrients to the brain, leading to diminished oxygen supply, increased oxidative stress and cell death. All these have been implicated in Alzheimer's disease (AD). Alzheimer's disease, a chronic, progressive, age related neurodegenerative disorder is the most common form of dementia in the elderly accounting for 60-80% of the cases. Clinically, Alzheimer's disease is characterized by loss of memory, damage of brain tissues, and neuronal and synaptic loss. Pathologically, it is delineated by accumulation of amyloid beta and tau proteins forming senile plaques and neurofibrillary tangles respectively. Apolipoprotein E (ApoE) polymorphism, increased oxidative stress and products of lipid peroxidation are associated with atherosclerosis and Alzheimer's disease. ApoE is a glycosylated protein that mediates plasma lipoprotein metabolism. ApoE isoforms have differential effect on amyloid beta aggregation and clearance, thus playing an important role in Alzheimer's pathology. Serum paraoxonase 1 (PON1) is a lipoprotein associated antioxidant enzyme that prevents lipid peroxidation. S100B protein is a plasma biomarker, altered expression of which has been implied in AD. We propose the hypothesis that combined deficiencies in apolipoprotein E and antioxidant defense (established by the lack of PON1), together with dyslipidemia and development of carotid atherosclerosis in aging mice would reflect Alzheimer's pathology. The brains of young and old ApoE-PON1 double knockout (DKO) mice and control C57BL/6J mice were harvested. Atherosclerotic lesions were quantified by Image J. RNA was isolated, cDNA was synthesized and quantitative RT-PCR was performed to detect mRNA levels of S100B. Blood levels of S100B protein was measured by ELISA. Brain tissues were stained with Hematoxylin and Eosin stain and 4G8 immunostain to detect histopathological changes. The blood brain barrier (BBB) is altered in AD resulting in increased permeability and vascular dysfunction. The vascular permeability of BBB was analyzed by Evans Blue Dye (EBD) assay. The results showed that the older DKO mice had severe carotid atherosclerosis, increased levels of serum S100B protein and elevated mRNA levels of S100B. Histological examination showed the presence of characteristic hallmarks of AD. The leakage of EBD into brain parenchyma indicated disruption of BBB. The results suggest that diminished blood flow and nutrient supply to the brain due to atherosclerosis and increased oxidative stress might contribute to Alzheimer's pathology. We suggest that older ApoE-PON1 DKO mice may serve as a model of Alzheimer's disease and prevention of atherosclerosis might promote regression of Alzheimer's disease.
Show less - Date Issued
- 2016
- Identifier
- CFE0006483, ucf:51407
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006483