Current Search: Anisotropy (x)
View All Items
- Title
- MECHANICAL CHARACTERIZATION OF ANISOTROPIC FUSED DEPOSITION MODELED POLYLACTIC ACID UNDER COMBINED MONOTONIC BENDING AND TORSION CONDITIONS.
- Creator
-
Santomauro, Aaron T, Gordon, Ali P., University of Central Florida
- Abstract / Description
-
Mechanical strength of polylactic acid (PLA) is increasingly relevant with time because of its attractive mechanical properties and 3D printability. Additive manufacturing (AM) methods, such as fused deposition modeling (FDM), stereolithography (SLA), and selective laser sintering (SLS), serve a vital role in assisting designers with cheap and efficient generation of the desired components. This document presents research to investigate the anisotropic response of multi-oriented PLA subjected...
Show moreMechanical strength of polylactic acid (PLA) is increasingly relevant with time because of its attractive mechanical properties and 3D printability. Additive manufacturing (AM) methods, such as fused deposition modeling (FDM), stereolithography (SLA), and selective laser sintering (SLS), serve a vital role in assisting designers with cheap and efficient generation of the desired components. This document presents research to investigate the anisotropic response of multi-oriented PLA subjected to multiple monotonic loading conditions. Although empirical data has previously been captured for multi-oriented PLA under tensile and compressive loading conditions, the data has yet to be applied with regard to a representative component geometry. The tensile and compressive empirical data were ultimately used to develop elastic and yield constitutive models which aided in the characterization of PLA under torsion and bending. This representative component geometry is expected to experience a combined torsion and bending load condition in an effort to address this integral gap in the mechanical properties of multi-oriented PLA. In addition to the acquired empirical data, finite element analysis (FEA) and analytical modeling are employed to supplement the accurate modeling of future component analysis. As a result of the proposed array of experiments, the torsional and bending capabilities of PLA are forecasted to vary based on the print orientation. Lastly, the broader impact of this work is dedicated to addressing the material's capability to operate in environments which possess significant torsion and bending such as model aircraft wings and shafts for remote controlled cars.
Show less - Date Issued
- 2019
- Identifier
- CFH2000550, ucf:45631
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000550
- Title
- AN IMPROVED TIGHT-BINDING MODEL FOR PHOSPHORENE.
- Creator
-
DeLello, Kursti, Mucciolo, Eduardo, University of Central Florida
- Abstract / Description
-
The intent of this thesis is to improve upon previously proposed tight-binding models for one dimensional black phosphorus, or phosphorene. Previous models offer only a qualitative analysis of the band structure of phosphorene, and fail to fully realize critical elements in the electronic band structure necessary for transport calculations. In this work we propose an improved tight-binding model for phosphorene by including up to eight nearest-neighbor interactions. The efficacy of the model...
Show moreThe intent of this thesis is to improve upon previously proposed tight-binding models for one dimensional black phosphorus, or phosphorene. Previous models offer only a qualitative analysis of the band structure of phosphorene, and fail to fully realize critical elements in the electronic band structure necessary for transport calculations. In this work we propose an improved tight-binding model for phosphorene by including up to eight nearest-neighbor interactions. The efficacy of the model is verified by comparison with DFT-HSE06 calculations, and the anisotropy of the effective masses in the armchair and zigzag directions is considered.
Show less - Date Issued
- 2016
- Identifier
- CFH2000023, ucf:45597
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000023
- Title
- ANISOTROPY EVOLUTION DUE TO SURFACE TREATMENT ON 3D-PRINTED FUSED DEPOSITION MODELING (FDM) OF ACRYLONITRILE BUTADIENE STYRENE (ABS).
- Creator
-
Lozinski, Blake E, Kassab, Alain, University of Central Florida
- Abstract / Description
-
Purpose: This paper will present insight to the methodology and results of the experimental characterization of Acrylonitrile Butadiene Styrene (ABS) using Fused Deposition Modeling (FDM). The work in this research explored the effects of print orientation, surface treatment, and ultraviolet (UV) light degradation with the utilization of Digital Image Correlation (DIC) on ABS tensile specimens. Design/methodology: ABS specimens were printed at three build orientations (flat (0 degrees), 45...
Show morePurpose: This paper will present insight to the methodology and results of the experimental characterization of Acrylonitrile Butadiene Styrene (ABS) using Fused Deposition Modeling (FDM). The work in this research explored the effects of print orientation, surface treatment, and ultraviolet (UV) light degradation with the utilization of Digital Image Correlation (DIC) on ABS tensile specimens. Design/methodology: ABS specimens were printed at three build orientations (flat (0 degrees), 45 degrees, and up-right (90 degrees)). Each of these specimens were treated with three different surface treatments including a control (acrylic paint, Cyanoacrylate, and Diglycidyl Bisphenol A) followed by exposure to UV light to the respective batches. This experiment design will provide tensile direction properties with the effect of thermoset coatings and UV degradation. Dogbone FDM specimens based on ASTM standard D638 type IV were printed on a Stratasys Dimension SST (Soluble Support Technology) 1200es 3D Printer and loaded into a MTS Landmark Servohydraulic Test Systems. Analysis was preformed on the fracture section of the tensile specimens utilized DIC and comparing Ultimate Tensile Strength (UTS) and Ultimate Fracture Strength (UFS). Findings: From the results UV light did not play a large factor in the strength of the specimens. The print orientation showed the largest anisotropic behavior where some specimens experienced as much as a 54% difference in ultimate tensile strength. Thermoset coated specimens experienced a maximum of 2% increase in strength for the Cyanoacrylate and Diglycidyl Bisphenol A specimens where the acrylic paint and natural did not. Several findings were of value when looking at the stress strain plots. Originality/value: This paper provides knowledge to the limited work on print build orientation, thermoset coatings and, UV light on ABS specimens. Very little to no work has been done on these three properties. This paper can serve as the foundation of future work on external applications on ABS plastics.
Show less - Date Issued
- 2017
- Identifier
- CFH2000269, ucf:45825
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFH2000269
- Title
- HIGH BIREFRINGENCE AND LOW VISCOSITY LIQUID CRYSTALS.
- Creator
-
Wen, Chien-Hui, Wu, Shin-Tson, University of Central Florida
- Abstract / Description
-
In this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual- frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ~0.4, and super high birefringence...
Show moreIn this dissertation, liquid crystal (LC) materials and devices are investigated in order to meet the challenges for photonics and displays applications. We have studied three kinds of liquid crystal materials: positive dielectric anisotropic LCs, negative dielectric anisotropic LCs, and dual- frequency LCs. For the positive dielectric anisotropic LCs, we have developed some high birefringence isothiocyanato tolane LC compounds with birefringence ~0.4, and super high birefringence isothiocyanato biphenyl-bistolane LC compounds with birefringence as high as ~0.7. Moreover, we have studied the photostability of several high birefringence LC compounds, mixtures, and LC alignment layers in order to determine the failure mechanism concerning the lifetime of LC devices. Although cyano and isothiocyanato LC compounds have similar absorption peaks, the isothiocyanato compounds are more stable than their cyano counterparts under the same illumination conditions. This ultraviolet-durable performance of isothiocyanato compounds originates from its molecular structure and the delocalized electron distribution. We have investigated the alignment performance of negative dielectric anisotropic LCs in homeotropic (vertical aligned, VA) LC cell. Some (2,3) laterally difluorinated biphenyls, terphenyls and tolanes are selected for this study. Due to the strong repulsive force between LCs and alignment layer, (2,3) laterally difluorinated terphenyls and tolanes do not align well in a VA cell resulting in a poor contrast ratio for the LC panel. We have developed a novel method to suppress the light leakage at dark state. By doping positive ´Õ or non-polar LC compounds/mixtures into the host negative LC mixtures, the repulsive force is reduced and the cell exhibits an excellent dark state. In addition, these dopants increase the birefringence and reduce the viscosity of the host LCs which leads to a faster response time. Dual-frequency liquid crystal exhibits a unique feature that its dielectric anisotropy changes from positive to negative when we increase the operating frequency. Submillisecond response time can be achieved by switching the frequency of a biased voltage, rather than switching the voltage at a given frequency. In this dissertation, we investigate the dielectric heating effect of dual-frequency LCs. Because the absorption peak of imaginary dielectric constant occurs at high frequency region (~ MHz), there is a heat generated when the LC cell is operated at a high frequency voltage. To measure the transient temperature change of the LC inside the cell, we have developed a non-contact method by utilizing the temperature-dependent birefringence property of the LC. Most importantly, we have formulated a new dual-frequency LC mixture which greatly reduces the dielectric heating effect while maintaining good physical properties. Another achievement in this thesis is that we have developed a polarization independent phase modulator by using a negative dielectric anisotropic LC gel. With ~20 % of polymer mixed in the LC host, the LC forms polymer network which, in turn, exerts a strong anchoring force to the neighboring LC molecules. As a result, the operating voltage increases but the response time is significantly decreased. On the phase shift point of view, our homeotropic LC gel has ~0.08 ànphase shift, which is 2X larger than the previous nano-sized polymer-dispersed liquid crystal droplets. Moreover, it is free from light scattering and requires a lower operating voltage. In conclusion, this dissertation provides solutions to improve the performance of LC devices both in photonics and displays applications. These will have great impacts in defense and display systems such as optical phased array, LCD TVs, projectors, and LCD monitors.
Show less - Date Issued
- 2006
- Identifier
- CFE0000970, ucf:46698
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0000970
- Title
- MAGNETIC PROPERTIES OF SPUTTER DEPOSITED FE-BASED AMORPHOUS THIN FILMS FOR RESONATOR APPLICATION.
- Creator
-
China, Chaitali, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
In this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was...
Show moreIn this study we investigate the magnetic properties of Fe-based amorphous thin films. Fe1-x-y-zBxSiyCz, Fe80-xNixB20, Fe80-xMnxB20, and Fe73-xMnxB27 films were deposited on silicon and glass substrates in a DC and RF magnetron sputtering system. Inductive magnetic measurements were performed to investigate the magnetic properties, including induced anisotropy and magnetostriction, of the as-deposited and annealed films using an M-H Looper. The chemical composition of the films was characterized using secondary ion mass spectroscopy (SIMS). The physical thickness of the films was determined by use of a stylus profilometer. The M-H Looper studies indicated that the induced anisotropy (Hk) depends strongly on the nickel concentration as well as on the annealing conditions, specifically the time and temperature of the annealing process. For the same metalloid concentration, the induced anisotropy has a maximum as a function of Ni. For the same nickel concentration and annealing time, it was found that the value of Hk decreases with the increase in annealing temperature. For each composition studied, low temperature long time annealing showed a higher value of Hk compared to high temperature short time annealing. From the magnetostriction values of Fe80-xNixB20 alloys, it was found that the sputter deposited films show similar trend but differ in magnitude when compared with ribbon samples. The magnetostriction of annealed thin films is found to be representative of ribbon samples. A potential composition modification to improve the strength of the field induced anisotropy is the addition of low levels of Mn.
Show less - Date Issued
- 2006
- Identifier
- CFE0001275, ucf:46896
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001275
- Title
- Density-Functional Theory+Dynamical Mean-Field Theory Study of the Magnetic Properties of Transition-Metal Nanostructures.
- Creator
-
Kabir, Alamgir, Rahman, Talat, Kara, Abdelkader, Del Barco, Enrique, Kik, Pieter, University of Central Florida
- Abstract / Description
-
In this thesis, Density Functional Theory (DFT) and Dynamical Mean-Field Theory (DMFT) approaches are applied to study the magnetic properties of transition metal nanosystems of different sizes and compositions. In particular, in order to take into account dynamical electron correlation effects (time-resolved local charge interactions), we have adopted the DFT+DMFT formalism and made it suitable for application to nanostructures. Preliminary application of this DFT+DMFT approach, using...
Show moreIn this thesis, Density Functional Theory (DFT) and Dynamical Mean-Field Theory (DMFT) approaches are applied to study the magnetic properties of transition metal nanosystems of different sizes and compositions. In particular, in order to take into account dynamical electron correlation effects (time-resolved local charge interactions), we have adopted the DFT+DMFT formalism and made it suitable for application to nanostructures. Preliminary application of this DFT+DMFT approach, using available codes, to study the magnetic properties of small (2 to 5-atom) Fe and FePt clusters provide meaningful results: dynamical effects lead to a reduction of the cluster magnetic moment as compared to that obtained from DFT or DFT+U (U being the Coulomb repulsion parameter). We have subsequently developed our own nanoDFT+DMFT code and applied it to examine the magnetization of iron particles containing10-147 atoms. Our results for the cluster magnetic moments are in a good agreement with experimental data. In particular, we are able to reproduce the oscillations in magnetic moment with size as observed in the experiments. Also, DFT+DMFT does not lead to an overestimation of magnetization for the clusters in the size range of 10-27 atoms found with DFT and DFT+U. On application of the nanoDFT+DMFT approach to systems with mixed geometry (-) Fe2O3 film, which are periodic (infinitely extended), in two directions, and finite in the third. Similar to DFT+U, we find that the surface atom magnetic moments are smaller compared to the bulk. However, the absolute values of the surface atoms magnetic moments are smaller in DFT+DMFT. In parallel, we have carried out a systematic study of magnetic anisotropy in bimetallic L10 FePt nanoparticles (20-484 atoms) by using two DFT-based approaches: direct and the torque method. We find that the magnetocrystalline anisotropy (MCA) of FePt clusters is larger than that of the pure Fe and Pt ones. We explain this effect by a large hybridization of 3d Fe- and 5d Pt-atom orbitals, which lead to enhancement of the magnetic moment of the Pt atom, and hence to a larger magnetic anisotropy because of large spin-orbit coupling of Pt atoms. In addition, we find that particles whose (large) central layer consists of Pt atoms, rather than Fe, have larger MCA due to stronger hybridization effects. Such 'protected' MCA, which does not require protective cladding, can be used in modern magnetic technologies.
Show less - Date Issued
- 2015
- Identifier
- CFE0006038, ucf:50971
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006038
- Title
- Tensile-Compressive Asymmetry and Anisotropy of Fused Deposition Modeling PLA under Monotonic Conditions.
- Creator
-
Perkowski, Casey, Gordon, Ali, Kassab, Alain, Divo, Eduardo, University of Central Florida
- Abstract / Description
-
Additive Manufacturing (AM) continues to gain popularity for its ability to produce complexly-shaped final use components that are impractical to manufacture by traditional methods; however, additive manufactured parts contain complex mesostructures that result in directionally-dependent mechanical properties that have yet to be fully characterized. This effort demonstrates a framework of experimental and analytical methods needed to characterize the uniaxial monotonic behavior of fused...
Show moreAdditive Manufacturing (AM) continues to gain popularity for its ability to produce complexly-shaped final use components that are impractical to manufacture by traditional methods; however, additive manufactured parts contain complex mesostructures that result in directionally-dependent mechanical properties that have yet to be fully characterized. This effort demonstrates a framework of experimental and analytical methods needed to characterize the uniaxial monotonic behavior of fused deposition modeling PLA using tensile and compressive experiments on specimens printed at various orientations. Based on experimental results, the asymmetry and anisotropy of the tensile and compressive response was analyzed for a candidate material. Specimens from different orientations underwent microscopy and failure surface analysis to correlate test data. The material was observed to exhibit tetragonal behavior with tensile-compressive asymmetry. The experimental and simulated results show a strong correlation. Based on the collection of results, analysis, and computations, this work demonstrates a practice that can be used to characterize similar materials for use in AM components.
Show less - Date Issued
- 2017
- Identifier
- CFE0006778, ucf:51847
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006778
- Title
- TERTIARY CREEP DAMAGE MODELING OF A TRANSVERSELY ISOTROPIC NI-BASED SUPERALLOY.
- Creator
-
Stewart, Calvin, Gordon, Ali, University of Central Florida
- Abstract / Description
-
Anisotropic tertiary creep damage formulations have become an increasingly important prediction technique for high temperature components due to drives in the gas turbine industry for increased combustion chamber exit pressures, temperature, and the use of anisotropic materials such as metal matrix composites and directionally-solidified (DS) Ni-base superalloys. Typically, isotropic creep damage formulations are implemented for simple cases involving a uniaxial state of stress; however,...
Show moreAnisotropic tertiary creep damage formulations have become an increasingly important prediction technique for high temperature components due to drives in the gas turbine industry for increased combustion chamber exit pressures, temperature, and the use of anisotropic materials such as metal matrix composites and directionally-solidified (DS) Ni-base superalloys. Typically, isotropic creep damage formulations are implemented for simple cases involving a uniaxial state of stress; however, these formulations can be further developed for multiaxial states of stress where materials are found to exhibit induced anisotropy. In addition, anisotropic materials necessitate a fully-developed creep strain tensor. This thesis describes the development of a new anisotropic tertiary creep damage formulation implemented in a general-purpose finite element analysis (FEA) software. Creep deformation and rupture tests are conducted on L, T, and 45°-oriented specimen of subject alloy DS GTD-111. Using the Kachanov-Rabotnov isotropic creep damage formulation and the optimization software uSHARP, the damage constants associated with the creep tests are determined. The damage constants, secondary creep, and derived Hill Constants are applied directly into the improved formulation. Comparison between the isotropic and improved anisotropic creep damage formulations demonstrates modeling accuracy. An examination of the off-axis creep strain terms using the improved formulation is conducted. Integration of the isotropic creep damage formulation provides time to failure predictions which are compared with rupture tests. Integration of the improved anisotropic creep damage produces time to failure predictions at intermediate orientations and any state of stress. A parametric study examining various states of stress, and materials orientations is performed to verify the flexibility of the improved formulation. A parametric exercise of the time to failure predictions for various levels of uniaxial stress is conducted.
Show less - Date Issued
- 2009
- Identifier
- CFE0002918, ucf:48012
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0002918
- Title
- NONLINEAR OPTICAL PROPERTIES OF ORGANIC CHROMOPHORES CALCULATED WITHIN TIME DEPENDENT DENSITY FUNCTIONAL THEORY.
- Creator
-
Tafur, Sergio, Kokoouline, Viatcheslav, University of Central Florida
- Abstract / Description
-
Time Dependent Density Functional Theory offers a good accuracy/computational cost ratio among different methods used to predict the electronic structure for molecules of practical interest. The Coupled Electronic Oscillator (CEO) formalism was recently shown to accurately predict Nonlinear Optical (NLO) properties of organic chromophores when combined with Time Dependent Density Functional Theory. Unfortunately, CEO does not lend itself easily to interpretation of the structure activity...
Show moreTime Dependent Density Functional Theory offers a good accuracy/computational cost ratio among different methods used to predict the electronic structure for molecules of practical interest. The Coupled Electronic Oscillator (CEO) formalism was recently shown to accurately predict Nonlinear Optical (NLO) properties of organic chromophores when combined with Time Dependent Density Functional Theory. Unfortunately, CEO does not lend itself easily to interpretation of the structure activity relationships of chromophores. On the other hand, the Sum Over States formalism in combination with semiempirical wavefunction methods has been used in the past for the design of simplified essential states models. These models can be applied to optimization of NLO properties of interest for applications. Unfortunately, TD-DFT can not be combined directly with SOS because state-to-state transition dipoles are not defined in the linear response TD approach. In this work, a second order CEO approach to TD-DFT is simplified so that properties of double excited states and state-to-state transition dipoles may be expressed through the combination of linear response properties. This approach is termed the a posteriori Tamm-Dancoff approximation (ATDA), and validated against high-level wavefunction theory methods. Sum over States (SOS) and related Two-Photon Transition Matrix formalism are then used to predict Two-Photon Absorption (2PA) profiles and anisotropy, as well as Second Harmonic Generation (SHG) properties. Numerical results for several conjugated molecules are in excellent agreement with CEO and finite field calculations, and reproduce experimental measurements well.
Show less - Date Issued
- 2007
- Identifier
- CFE0001853, ucf:47372
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0001853
- Title
- High-efficiency Blue Phase Liquid Crystal Displays.
- Creator
-
Li, Yan, Wu, Shintson, Saleh, Bahaa, Zeldovich, Boris, Wu, Xinzhang, University of Central Florida
- Abstract / Description
-
Blue phase liquid crystals (BPLCs) have a delicate lattice structure existing between chiral nematic and isotropic phases, with a stable temperature range of about 2 K. But due to short coherent length, these self-assembled nano-structured BPLCs have a fast response time. In the past three decades, the application of BPLC has been rather limited because of its narrow temperature range. In 2002, Kikuchi et al. developed a polymer stabilization method to extend the blue-phase temperature range...
Show moreBlue phase liquid crystals (BPLCs) have a delicate lattice structure existing between chiral nematic and isotropic phases, with a stable temperature range of about 2 K. But due to short coherent length, these self-assembled nano-structured BPLCs have a fast response time. In the past three decades, the application of BPLC has been rather limited because of its narrow temperature range. In 2002, Kikuchi et al. developed a polymer stabilization method to extend the blue-phase temperature range to more than 60 K. This opens a new gateway for display and photonic applications.In this dissertation, I investigate the material properties of polymer-stabilized BPLCs. According the Gerber's model, the Kerr constant of a BPLC is linearly proportional to the dielectric anisotropy of the LC host. Therefore, in the frequency domain, the relaxation of the Kerr constant follows the same trend as the dielectric relaxation of the host LC. I have carried out experiments to validate the theoretical predictions, and proposed a model called extended Cole-Cole model to describe the relaxation of the Kerr constant. On the other hand, because of the linear relationship, the Kerr constant should have the same sign as the dielectric anisotropy of the LC host; that is, a positive or negative Kerr constant results from positive or negative host LCs, respectively. BPLCs with a positive Kerr constant have been studied extensively, but there has been no study on negative polymer-stabilized BPLCs. Therefore, I have prepared a BPLC mixture using a negative dielectric anisotropy LC host and investigated its electro-optic properties. I have demonstrated that indeed the induced birefringence and Kerr constant are of negative sign. Due to the fast response time of BPLCs, color sequential display is made possible without color breakup. By removing the spatial color filters, the optical efficiency and resolution density are both tripled. With other advantages such as alignment free and wide viewing angle, polymer-stabilized BPLC is emerging as a promising candidate for next-generation displays.However, the optical efficiency of the BPLC cell is relatively low and the operating voltage is quite high using conventional in-plane-switching electrodes. I have proposed several device structures for improving the optical efficiency of transmissive BPLC cells. Significant improvement in transmittance is achieved by using enhanced protrusion electrodes, and a 100% transmittance is achievable using complementary enhanced protrusion electrode structure.For a conventional transmissive blue phase LCD, although it has superb performances indoor, when exposed to strong sunlight the displayed images could be washed out, leading to a degraded contrast ratio and readability. To overcome the sunlight readability problem, a common approach is to adaptively boost the backlight intensity, but the tradeoff is in the increased power consumption. Here, I have proposed a transflective blue phase LCD where the backlight is turned on in dark surroundings while ambient light is used to illuminate the displayed images in bright surroundings. Therefore, a good contrast ratio is preserved even for a strong ambient. I have proposed two transflective blue phase LCD structures, both of which have single cell gap, single gamma driving, reasonably wide view angle, low power consumption, and high optical efficiency. Among all the 3D technologies, integral imaging is an attractive approach due to its high efficiency and real image depth. However, the optimum observation distance should be adjusted as the displayed image depth changes. This requires a fast focal length change of an adaptive lens array. BPLC adaptive lenses are a good candidate because of their intrinsic fast response time. I have proposed several BPLC lens structures which are polarization independent and exhibit a parabolic phase profile in addition to fast response time.To meet the low power consumption requirement set by Energy Star, high optical efficiency is among the top lists of next-generation LCDs. In this dissertation, I have demonstrated some new device structures for improving the optical efficiency of a polymer-stabilized BPLC transmissive display and proposed sunlight readable transflective blue-phase LCDs by utilizing ambient light to reduce the power consumption. Moreover, we have proposed several blue-phase LC adaptive lenses for high efficiency 3D displays.
Show less - Date Issued
- 2012
- Identifier
- CFE0004787, ucf:49725
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004787
- Title
- Measuring and Modeling NMR and Emission Spectra to Gain New Insight into Challenging Organic Compounds.
- Creator
-
Powell, Jacob, Harper, James, Campiglia, Andres, Beazley, Melanie, Richardson, David, Blair, Richard, University of Central Florida
- Abstract / Description
-
The advancement of theoretical methods in recent years has allowed the calculation of highly accurate spectroscopic parameters. Comparing these values to the corresponding experimental data can allow molecular structures to be elucidated. This dissertation details the use of experimental and theoretical data from nuclear magnetic resonance (NMR) and fluorescence spectroscopy to determine structure. Herein the NMR focus is on measuring (&) modeling chemical shift anisotropy and one-bond carbon...
Show moreThe advancement of theoretical methods in recent years has allowed the calculation of highly accurate spectroscopic parameters. Comparing these values to the corresponding experimental data can allow molecular structures to be elucidated. This dissertation details the use of experimental and theoretical data from nuclear magnetic resonance (NMR) and fluorescence spectroscopy to determine structure. Herein the NMR focus is on measuring (&) modeling chemical shift anisotropy and one-bond carbon-carbon J-coupling constants (1JCC). The fluorescence analysis models vibrationally resolved fluorescence spectra.Chemical shift anisotropy techniques were used to study two conflicting crystal structures of the n-alkyl fatty acid, lauric acid. These two crystal structures differ only in their COOH conformation. Lattice-including density functional theory (DFT) refinements of each crystal structure failed to match experimental data leading to the proposal of a third crystal structure with a hydrogen disordered COOH moiety. This disorder strengthens the hydrogen bond providing a new rationalization to the long observed non-monotonic melting behavior of fatty acids having even and odd numbers of carbons.The INADEQUATE is a NMR experiment that directly establishes the skeleton of organic compounds by measuring the 1JCC throughout a molecule. The low occurrence of 13C-13C pairs (1 in 10,000) and breaks in connectivity due to the presence of heteroatoms causes challenges to INADEQUATE analysis. Here, the insensitivity problem is overcome using analysis software that automatically processes data and identifies signals, even when they are comparable in magnitude to noise. When combined with DFT 1JCC predictions,configuration and confirmations of the natural products 5-methylmellein and hydroheptelidic acid are elucidated.Vibrationally resolved fluorescence spectra of high molecular weight PAHs can be accurately calculated through time-dependent density functional theory (TD-DFT) methods. Here, the theoretical spectral profiles of certain PAHs are shown to match experimental high- resolution fluorescence spectra acquired at cryogenic temperatures. However, in all cases, theoretical spectra were systematically offset from experimental spectra. To decrease these uncertainties spectra were empirically corrected and an automated scheme employed to match theoretical spectra with all possible experimental spectra. In all cases the theoretical spectra were correctly matched to the experimental spectra.
Show less - Date Issued
- 2017
- Identifier
- CFE0006953, ucf:51680
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0006953