Current Search: Antennas Electronics (x)
View All Items
- Title
- Implementation of a 35 GHz Microstrip Antenna System.
- Creator
-
Albritton, Rachel S., Wahid, Parveen A., Engineering
- Abstract / Description
-
University of Central Florida College of Engineering Thesis; Millimeter waves, corresponding to the frequency range 30 to 300 GHz, have characteristics which make them ideal for many applications. Antennas at these frequencies have the advantage of reduced size and weight and can be fabricated as an integral part of the system they are used in. Millimeter wave microstrip antennas have been extensively researched over the past decade. The purposed of this report was to build and test 35 GHz...
Show moreUniversity of Central Florida College of Engineering Thesis; Millimeter waves, corresponding to the frequency range 30 to 300 GHz, have characteristics which make them ideal for many applications. Antennas at these frequencies have the advantage of reduced size and weight and can be fabricated as an integral part of the system they are used in. Millimeter wave microstrip antennas have been extensively researched over the past decade. The purposed of this report was to build and test 35 GHz microstrip antennas as well as put into operation a high voltage klystron power supply, Micro-Now Model 756. The antennas were fabricated and tested in the lab and the results obtained are reported. The operation of the Model 756 power supply is also outlined in detail.
Show less - Date Issued
- 1987
- Identifier
- CFR0008159, ucf:53078
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFR0008159
- Title
- Antenna-coupled infrared focal plane array.
- Creator
-
Gonzalez, Francisco Javier, Boreman, Glenn D., Engineering and Computer Sciences
- Abstract / Description
-
University of Central Florida College of Engineering Thesis; In this dissertation a new type of infared focal plan array (IR FPA) was investigated, consisting of antenna-coupled microbolometer fabricated using electron-beam lithography. Four different antenna designs were experimentally demonstrated at 10-micron wavelength: dipole, bowtie, square-spiral, and log-periodic. The main differences between these antenna types were their bandwidth, collection area, angular reception pattern, and...
Show moreUniversity of Central Florida College of Engineering Thesis; In this dissertation a new type of infared focal plan array (IR FPA) was investigated, consisting of antenna-coupled microbolometer fabricated using electron-beam lithography. Four different antenna designs were experimentally demonstrated at 10-micron wavelength: dipole, bowtie, square-spiral, and log-periodic. The main differences between these antenna types were their bandwidth, collection area, angular reception pattern, and polarization. To provide pixel collection areas commensurate with typical IR FPA requirements, two configuration were investigated: a two-dimensional serpentine interconnection of individual IR antennas, and a Fresnel-zone-plate (FZP) coupled to a single-element antenna. Optimum spacing conditions for the two-dimensional interconnect were developed. Increased sensitivity was demonstrated using a FZP-coupled design. In general, it was found that the configuration of the antenna substrate material was critical for optimization of sensitivity. The best results were obtained using this membranes of silicon nitride to enhance the thermal isolation of the antenna-coupled bolometers. In addition, choice of the bolometer material was also important, with the best results obtained using vanadium oxide. Using optimum choices for all parameters, normalized sensitivity (D*) values in the range of mid 10^8 [cm√Hz/W] were demonstrated for antenna-coupled IR sensors, and directions for further improvements were identified. Successful integration of antenna-coupled pixels with commercial readout integrated circuits was also demonstrated.
Show less - Date Issued
- 2003
- Identifier
- CFR0011595, ucf:53049
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFR0011595
- Title
- BST-Inspired Smart Flexible Electronics.
- Creator
-
Shen, Ya, Gong, Xun, Wahid, Parveen, Sundaram, Kalpathy, Coffey, Kevin, University of Central Florida
- Abstract / Description
-
The advances in modern communication systems have brought about devices with more functionality, better performance, smaller size, lighter weight and lower cost. Meanwhile, the requirement for newer devices has become more demanding than ever. Tunability and flexibility are both long-desired features. Tunable devices are 'smart' in the sense that they can adapt to the dynamic environment or varying user demand as well as correct the minor deviations due to manufacturing fluctuations,...
Show moreThe advances in modern communication systems have brought about devices with more functionality, better performance, smaller size, lighter weight and lower cost. Meanwhile, the requirement for newer devices has become more demanding than ever. Tunability and flexibility are both long-desired features. Tunable devices are 'smart' in the sense that they can adapt to the dynamic environment or varying user demand as well as correct the minor deviations due to manufacturing fluctuations, therefore making it possible to reduce system complexity and overall cost. It is also desired that electronics be flexible to provide conformability and portability.Previously, tunable devices on flexible substrates have been realized mainly by dicing and assembling. This approach is straightforward and easy to carry out. However, it will become a (")mission impossible(") when it comes to assembling a large amount of rigid devices on a flexible substrate. Moreover, the operating frequency is often limited by the parasitic effect of the interconnection between the diced device and the rest of the circuit on the flexible substrate. A recent effort utilized a strain-sharing Si/SiGe/Si nanomembrane to transfer a device onto a flexible substrate. This approach works very well for silicon based devices with small dimensions, such as transistors and varactor diodes. Large-scale fabrication capability is still under investigation.A new transfer technique is proposed and studied in this research. Tunable BST (Barium Strontium Titanate) IDCs (inter-digital capacitors) are first fabricated on a silicon substrate. The devices are then transferred onto a flexible LCP (liquid crystalline polymer) substrate using wafer bonding of the silicon substrate to the LCP substrate, followed by silicon etching. This approach allows for monolithic fabrication so that the transferred devices can operate in millimeter wave frequency. The tunability, capacitance, Q factor and equivalent circuit are studied. The simulated and measured performances are compared. BST capacitors on LCP substrates are also compared with those on sapphire substrates to prove that this transfer process does not impair the performance.A primary study of a reflectarray antenna unit cell is also conducted for loss and phase swing performance. The BST thin film layout and bias line positions are studied in order to reduce the total loss. Transferring a full-size BST-based reflectarray antenna onto an LCP substrate is the ultimate goal, and this work is ongoing at the University of Central Florida (UCF).HFSS is used to simulate the devices and to prove the concept. All of the devices are fabricated in the clean room at UCF. Probe station measurements and waveguide measurements are performed on the capacitors and reflectarray antenna unit cells respectively.This work is the first comprehensive demonstration of this novel transfer technique.
Show less - Date Issued
- 2012
- Identifier
- CFE0004439, ucf:49339
- Format
- Document (PDF)
- PURL
- http://purl.flvc.org/ucf/fd/CFE0004439