Current Search: Bile Acids -- Cyanine Dyes -- J-Aggregate -- H-Aggregate (x)
-
-
Title
-
The Formation and Characterization of Mesoscopic J- and H-aggregates with Controlled Morphologies by the Co- and Templated Assembly of Cyanine Dyes.
-
Creator
-
Rhodes, Samuel, Fang, Jiyu, Jiang, Tengfei, Dong, Yajie, Florczyk, Stephen, Pang, Sean, University of Central Florida
-
Abstract / Description
-
The supramolecular aggregates of ?-conjugated molecules have become an area of great interest to the scientific community in recent years for their promise in biosensors and optoelectronic devices. Among various supramolecular aggregates, J- and H-aggregates of ?-conjugated dye molecules are particularly interesting because of their unique optical and excitonic properties that are not given by individual molecules. H-aggregates are composed of dye molecules in a face-to-face stacking, giving...
Show moreThe supramolecular aggregates of ?-conjugated molecules have become an area of great interest to the scientific community in recent years for their promise in biosensors and optoelectronic devices. Among various supramolecular aggregates, J- and H-aggregates of ?-conjugated dye molecules are particularly interesting because of their unique optical and excitonic properties that are not given by individual molecules. H-aggregates are composed of dye molecules in a face-to-face stacking, giving rise to a blue-shifted absorption band compared with the monomer band and a strong emission quenching. In contrast, J-aggregates represent an edge-to-edge stacking of dye molecules, showing a red-shifted absorption band with respect to the monomer band and a strong fluorescence emission. However, the use of J- and H-aggregates in biosensors and optoelectronic devices remains a challenge because of the difficulty of controlling their sizes and morphologies. In this dissertation, we develop two different paths for controlling the size and morphology of J- and H-aggregates. First, we show that the co-assembly of cyanine dyes and lithocholic acid (LCA) in ammonia solution can lead to the formation of mesoscopic J- and H-aggregate fibers, depending on the condition under which the co-assembly occurs. Second, we report the formation of mesoscopic J-aggregate tubes by using the preformed LCA tubes as a template. The structure, optical, and electronic properties of these J- and H-aggregate fiber and tubes are studied as a function of temperature. Finally, we exploit their applications as photo-induced electron transfer supramolecular probes for the detection of dopamine, an important neurotransmitter in central and peripheral nervous systems.
Show less
-
Date Issued
-
2018
-
Identifier
-
CFE0007412, ucf:52718
-
Format
-
Document (PDF)
-
PURL
-
http://purl.flvc.org/ucf/fd/CFE0007412